アンカーボルト材料認定番号 MSTL-0003 アンカーボルト材料認定番号 MBLT-0104 JFEスチール材料認定番号 MSTL-0130 JFEスチール材料認定番号 MSTL-0131 ベーターリヒーングが評定 CBL SS007-14号 ベーターリヒーングが評定 CBL SS005-18号

注入金物仕様

N C ベース工法 (P シリーズー鋼板ベース)

設計ハンドブック

〔ベース全型式に高強度鋼材(HBL®385)を採用〕

本設計ハンドブックは、建築設計事務所様、建築施工会社様、鉄骨加工業者様等において、 NCベースを用いた建築物を設計、施工、監理される際に、本製品を安全かつ効果的に御使用い ただくためのものです。

設計の前に、必ずご一読下さいますよう、お願い申し上げます。 なお、施工時の留意点につきましては、別冊の「N C ベース工法 (P シリーズ) 施工要領書」 をご参照下さいますよう、合わせてお願い申し上げます。

本ハンドブックの中で、特に注意していただきたい事項につきま しては、以下の表示をしております。

.....

↑ 注意:一般的な注意を喚起するための表示

⚠ 警告:取扱いを誤った場合に、人が死亡、または重症を負う

危険な状態が生じることが想定される場合の表示

- ♠ 警告 ・NCベース工法は国土交通大臣認定材料を用いた、指定性能評価機関の評定取得工法です。
 - ・NCベース工法としての回転剛性、耐力、およびアンカーボルトの基礎コンクリート柱型部への定着が基本です。
 - ・本設計ハンドブックと同等以上の設計をお願いいたします。それらが遵守されずに生じたトラブルにつきましては、責任を負いかねます。
 - ・アンカーボルトセット、ベース下グラウト充填及び、アンカーボルト孔シール材 注入施工は、NCベース指定施工店が行います。
 - ・本ハンドブックの内容で、疑問点や不明な点がございましたら、日本鋳造㈱にお問合わせ ください(問合わせ先は、裏表紙を御参照ください)。

目 次

W 200
/4 > /#

第1章	総則 -	
1.1	適用範囲 -	
1.2	NCベース工法の商品構成 -	
1.3	NCベース工法の部材構成 -	
第2章	使用材料 -	
2.1	部材の材質 -	
2.	1.1 ベースプレート -	
2.	1.2 アンカーボルト・ナット・座金および定	着板
2.	1.3 注入金物(評定番号: CBL S	
2.	1.4 ベースプレート下面のモルタルおよび	アンカーボルト孔の注入用シール材
2.	1.5 RC基礎柱のコンクリート -	
2.	1.6 RC基礎柱の鉄筋 -	
2.2	形状および寸法 -	
2.	2.1 ペースプ・レート -	
2.	2.2 アンカーボルト孔径 -	
2.	2.3 定着板 -	
2.	2.4 アンカーボルト、ナット、座金、注入	金物の形状と寸法
	およびグラウト厚さ	
第3章	▲ 警告 NCベース工法を用い	、た柱脚の設計
3.1	NCベース工法を用いた柱脚の設計	
3.	1.1 NCベース工法の設計	
3.	1.2 NCベース柱脚の設計フロー	
3.2	架構解析時のNCベース柱脚の仮定	
3.	2.1 架構解析時の前提条件	
3.	2.2 柱脚部の回転剛性の評価式は	および回転剛性値
3.3	NCベース柱脚部の耐力および耐力を	÷
3.	3.1 NCベーx柱脚部の軸力およびi	曲げ耐力
3.	3.2 柱脚部の耐力評価	
3.	3.3 NCベース柱脚部の耐力式	
3.	3.4 柱脚部せん断力の検討	
3.4	RC基礎柱型部の設計	
3.	4.1 柱型部の設計方法	
3.	4.2 柱型部の評定上の設計条件	
3.	4.3 立上り筋の定着長さ	
3.	4.4 その他の柱型部の設計細則	
3.	4.5 柱脚部の耐力の検定	

付録編

付1/公注	注意 RC基礎柱型の詳細設計例および	
	柱脚部の耐力曲線図	
付 2	ベースプレートの型式仮定表	
付3 🗘	注意 RC基礎柱型の最小幅の計算例	
付4	柱脚のせん断耐力の計算例	
4. 1	柱側面のスラブコンクリートの支圧抵抗による方法	
4.2	アンカーボルトのせん断耐力による方法	
付5	RC基礎柱型立上がり筋の必要定着長さ	
	(礎柱を鉄筋コンクリート造柱として計算する場合)	
付6	標準品ベースプレートの形状および寸法	
付7	CAD図面関連	
7. 1	NC ベース柱脚工法設計・施工標準 (1例)	
7.2	RC基礎柱型配筋図(1例)	
7.3	RC基礎柱型および基礎梁の配筋詳細図例(1例)	
資料編		
資1	NC^゙ース工法の基本的考え方	
資2	NCベース基礎柱型の設計・標準配筋について	
資3	NC^゙ース工法の材質および基準強度	
資4	グラウトモルタルの製品規格	
資 5	RC基礎柱型の許容せん断力の設計式	
資 6	RC基礎柱型の立上り筋の付着耐力の計算	

第1章 総 則

1.1 適用範囲

「本設計ハンドブック」は、鉄筋コンクリート構造の基礎を有する鉄骨造および充填型鋼管コンクリート構造骨組に、NCベース工法の標準品及びプロジェクト対応品を使用する場合の柱脚部の構造設計に適用する。

1.2 NCベース工法の商品構成

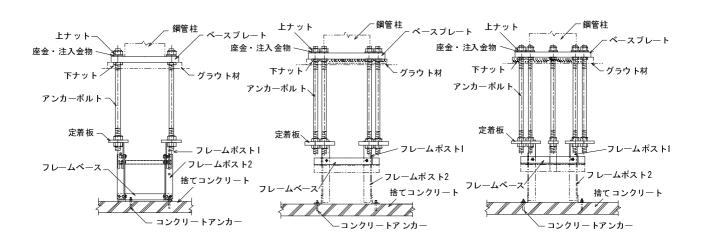
NCベース柱脚工法は、鉄骨造および充填型鋼管コンクリート構造用の露出型弾性固定柱脚工法であり、本工法には、下表に示す標準品*1とプロジェクト対応品*2 がある。

NCベース柱脚工法の商品種類

	, ,	,	適用	構造	*5	
	ヘースプ・レート	アンカーボルト	鉄骨造	充填型鋼管 コンクリート構造	第1層のDs値	
標準品*1	標準形状 (標準型)	*3	0	0	Ds値の割増し不要 (ただし、	
標準品"	標準形状 (コンクリート注入孔型)	下ナット方式		0	保有水平耐力は必要保有 水平耐力の1.1倍以上)	
	標準形状 (標準型、コングリート注入孔型)	下ナット *4 なし方式	0	0	上部構造の部材のDs値に 対して0.05 割増し	
*2 プロジェ外 対応品	プロジェ外対応形状	下ナット方式	0	0	標準品に同じ	
	/ ロ/ エクドXI //LJ //ジ4人	下ナットなし方式	0	0	標準形状(下ナットなし方式) に同じ	

- *1 標準品:あらかじめペースプレートの形状・寸法およびアンカーボルト本数・径を設定し、「NCベース柱脚工法設計 要領 ペースプレートの設計要領」に基づき設計し、型式表示をしたもの。
- *2 プロジェ外対応品:下記のいずれかをプロジェ外物件に適用するものである。
 - ① 標準形状ベースプレートを下ナットなし方式で用いる。
 - ② 日本鋳造(株)が「NCベース柱脚工法設計要領 ペースプレートの設計要領」に基づいて設計した プロジェ外対応形状ペースプレートを下ナット方式で用いて、柱脚部の耐力および回転剛性を「NCベース柱脚工法設計要領に示した耐力算定式」および「NCベース柱脚工法設計要領に示した回 転剛性評価式」に基づいて評価する。
 - ③ 同じくプロジェ外対応形状へースプレートを下ナットなし方式で用いて、柱脚部の耐力および回転剛性を評価する。

いずれのケースも、プロジェ外物件毎に最適な柱脚部を得ようとするものであり、プロジェ外対応品のベースプペレートの大きさと厚さは、標準品のベースプレートの寸法範囲内に収まるものとする。


- *3 下ナット方式: ハースプレートの上下にナットが1個ずつとする。ただし、アンカーボルト天端からのコンクリートかぶり 厚が 20mm 以上とれない場合は、戻り止めの処置を講じるものとする。
- *4 下ナットなし方式 : ^'ースプレートの上にタ'フ'ルナットとする。ただし、アンカーボルト天端からのコンクリートかぶり厚が20 mm 以上とれる場合は、シングルナットとすることができる。
- *5 二次設計のルート3において、柱脚部にヒンジができる場合の取扱い

(部材群としての種別がDの場合には適用しない)

1.3 NCベース工法の部材構成

NCベース工法は、図1.2.1 (a)、(b)、(c)に示すように、(イ) ベースプレート、(ロ) アンカーボルト・ナット・座金・ 注入金物、(^) 定着板、(ニ) アンカーフレーム、(ホ)グラウト材・注入用シール材、および(^) テンプ レート より構成される。

部品名		材質	規格			
ベースプレート	4・8・12 本タイプ [°]	HBL®385B (鋼板)	MSTL-0130 MSTL-0131			
アンカーホ゛ルト		N A B 700	MSTL-0003			
			MBTL-0104			
ナット		強度区分 6	JIS B 1181			
座金		硬度区分 200HV	JIS B 1256			
定着板		SS 400				
グラウトオオ		無収縮グラウト材	プレタスコン TYPE1 等			
注入用シール材		無機系	タスコンセメント 等			
アンカーフレーム		鋼製				
テンプ。レート		鋼製				
注入金物		鋼製				

- (a) アンカーホ ルト: 4 本タイプ
- (b) アンカーホ゛ルト: 8 本タイプ (c) アンカーホ゛ルト: 12 本タイプ

図1.2.1 NCベース工法の基本構成(下ナット方式)

第2章 使用材料

2.1 部材の材質

2. 1. 1 ベースプレート

- ① ベースプレート用鋼板は、JFE スチール㈱の国土交通大臣認定品であり、品質規準は表 2.1.1 に示す通りである。
 - 1) 「建築構造用 550N/mm²TMCP 鋼材」 (認定番号: MSTL-0130、0131)

表 2.1.1 鋼板ベースプレートの機械的性質

厚さ		引張	衝擊試験			
序で	降伏点	引張強さ	伸び	降伏比	温度	吸収エネルギー
	$385 \mathrm{N/mm}^2$	$550 \mathrm{N/mm}^2$				
100mm	以上	以上	20%	80%	0° C	70 J
以下	$505 \mathrm{N/mm}^2$	$670 \mathrm{N/mm}^2$	以上	以下		以上
	以下	以下				

引張試験片: JIS Z 2201 5号 衝撃試験片: JIS Z 2242 V/ッチ

2.1.2 アンカーボルト・ナット・座金および定着板

アンカーボルト・ナット・座金は、国土交通大臣認定品であり、品質基準は表 2.1.2 に示す通りである。

- 1) 「NC ベース柱脚工法アンカー用ボルトのセット NAB700」 (認定番号: MSTL-0003)
- 2) 「NC ベース柱脚工法アンカー用ボルトのセット NAB700(星田工場)」 (認定番号: MBLT-0104)

表 2.1.2 アンカーボルト・ナット・座金及び定着板

	アンカーホ゛ルト	ナット	座金	定着板				
	「NCベース柱脚]	「NCベース柱脚工法アンカー用ボルトのセット NAB700」						
規格		JIS B 1181 「六角ナット।	JIS B 1256 「平座金」	「一般構造用 圧延鋼材」				
材料区分	鋼	鋼	鋼	鋼				
強度区分 (硬さ区分)	NAB700	6	(200HV)	SS400				
形状の種別	(表2.2.4)	1種、3種	並丸	(表2.2.3)				
ネジの種類	メートル並目:M24~M64 メートル細目:M72	メートル並目:M24~M64 メートル細目:M72						

2.1.3 注入金物 (評定番号: CBL SS005-18号)

注入金物の材料は、S45C~S55C (JIS G 4051) とする。

注入金物は、NC ベースの工法評定(評定番号: CBL SS007-14号)とセットで使用する。

2.1.4 ベースプレート下面のモルタルおよびアンカーボルト孔の注入用シール材

①中心塗りモルタル: 無収縮モルタル材とし、基準強度は接する基礎コンクリートの強度以上とする。

② ベースプレート下の後詰めグラウト: 資料編 4.1 相当のグラウト (例 プレレタスコン TYPE1)

③アンカーボルト孔のシール材: 資料編 4.2 相当のシール材 (例 タスコンセメント)

2.1.5 RC 基礎柱のコンクリート

普通コンクリートとし、Fc=21N/mm²以上とする。 (「JASS5 鉄筋コンクリート工事」(日本建築学会)に適合) 尚、Fc=30N/mm²超えのコンクリートも使用可能であるが、ベース下のコンクリート強度は設計上 Fc=30N/mm²超え の強度は見込めない。

2.1.6 RC 基礎柱の鉄筋

D13、D16 は SD295、D19~D25 は SD345、D29~D32 は SD390 を標準とする。 (JIS G 3112「鉄筋コンクリート用棒鋼」に定める熱間圧延異形棒鋼)

2.2 形状および寸法

2.2.1 ベースプレート (鋼板製)

角形鋼管 アンカーホ・ルト 4 本タイプ、アンカーホ・ルト 8 本タイプ、12 本タイプ

円形鋼管 アンカーホ・ルト 4 本タイプ。、アンカーホ・ルト 8 本タイプ。

|標準品ペースプレートの形状および寸法は、「付録編の付6」に示す。|

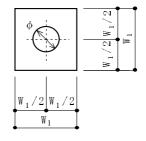
各表にない形状については、お問い合わせ下さい。

2.2.2 アンカーホ・ルト孔径

アンカーボルト孔径は、表 2.2.2による。

表 2.2.2 アンカーボルト孔径

アンカーホ゛ルト	M24	M27	M30	M36	M42	M48	M56	M64	M72
アンカーホ゛ルト孔 dз	29	32	38	45	53	61	70	79	87

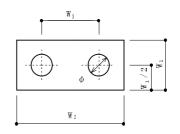

2.2.3 定着板

定着板の標準形状および寸法は、表 2.2.3(a)、(b)、(c)による。

表 2.2.3 (a) 定着板の標準形状と寸法

(アンカーホ ルト: 4 本タイプ) * (単位:mm)

アンカーホ゛ルト	W ₁	φ	t
1-24	58	25	16
1-27	66	28	16
1-30	73	31	16
1-36	88	37	19
1-42	103	43	22
1-48	118	49	25
1-56	136	57	28
1-64	150	66	32
1-72	165	74	36

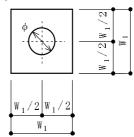


*等面積で隅をカットした形状とすることができる。

表 2.2.3 (b) 定着板の標準形状と寸法

(アンカーホ、ルト: 8 本タイプ。、12 本タイプ。) (単位:mm)

アンカーホ゛ルト	W_1	\mathbf{W}_2	W_3	φ	t
2-24	58	137	79	25	16
2-27	66	152	86	28	16
2-30	73	168	95	31	16
2-36	88	197	109	37	19
2-42	103	229	126	43	22
2-48	118	269	151	49	25
2-56	136	305	169	57	28
2-64	152	335	183	66	32
2-72	168	365	197	74	36



*必要面積を確保した上で、外側あるいは内側をカットした形状とすることができる。

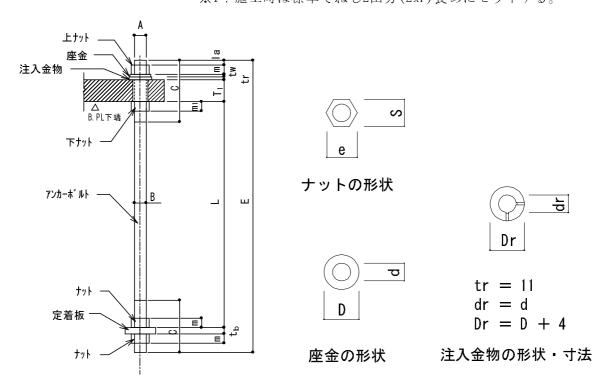
表 2.2.3 (c) 定着板の標準形状と寸法

(アンカーホ・ルト: 12 本タイプ。) (単位:mm)

アンカーホ゛ルト	W_{1}	ϕ	t
1-36	88	37	19
1-42	103	43	22
1-48	118	49	25
1-56	136	57	28
1 - 64	150	66	32
1-72	165	74	36

2.2.4 アンカーボルト、ナット、座金、注入金物の形状と寸法およびグラウト厚さ アンカーボルト、ナット、座金の形状と寸法およびグラウト厚さは、表 2.2.4 による。 注入金物の形状・寸法は下図による。

表 2.2.4 アンカーボルト・ナット・座金の形状および寸法(単位:mm)


	アンカーホ゛ルト								ナット			座金	È	ク゛ラウト
呼径	軸径	ネシ゛	ネシ゛	余長	定着	全長								標準
		ピッチ	長さ	※ 1	長さ		m	m 1	S	е	tw	d	D	厚さ
A	φΒ	Р	С	la	L	Е								
M24	24	3	*160	12	*400	*570	19	19	36	41.6	6	25	44	50
M27	27	3	**170	12	**405	**585	22	22	41	47.3	6	28	50	50
M30	30	3.5	**185	14	**450	**640	24	24	46	53.1	6	31	56	50
			195		600	805								
M36	36	4	**205	16	**540	**770	29	29	55	63.5	6	37	66	50
			210		720	945								
M42	42	4.5	**225	18	**630	**885	34	34	65	75	9	43	78	50
			240		840	1110								
M48	48	5	**240	20	**720	**1000	38	29	75	86.5	9	50	92	50
			260		960	1255								
M56	56	5.5	**270	22	**840	**1160	45	34	85	98.1	9	58	105	50
			280		1120	1440								
M64	64	6	320	24	1280	1640	51	38	95	110	12	66	115	50
M72	72	6	325	24	1440	1810	58	42	105	121	12	74	125	55

*: 定着長さ16.67d用(アンカーボルト:4本タイプM24のみ)

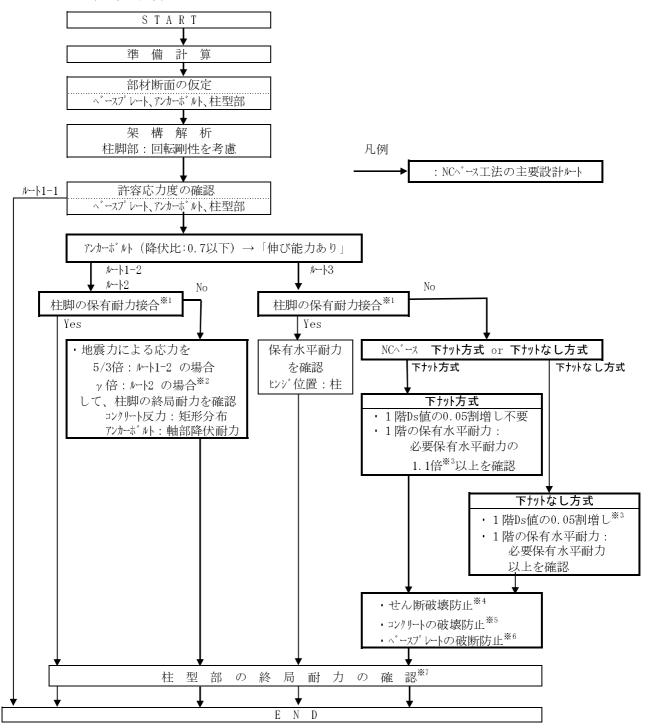
**: 定着長さ15d用(アンカーボルト: 4本タイプ)

他:定着長さ20d用(アンカーボルト:8本タイプ、12本タイプ)

※1:施工時は標準でねじ2山分(2xP)長めにセットする。

アンカーボルト 4本、8本、12本タイプ。(ベースプレート鋼板製)

- 3.1 NC ベース工法を用いた柱脚の設計
 - 3.1.1 NC ベース工法の設計
 - 一次設計では、柱脚部の回転剛性を考慮した架構解析結果の柱脚部の存在応力が、柱脚部の短期許容耐力に収まっていることを確認する。


ルート 3 において、柱鋼管側ではなく柱脚部側にヒンジができる場合において、下ナット方式では、第 1 層の Ds 値の 0.05 割増しは不要とする。ただし、第 1 層の保有水平耐力は必要保有水平耐力に対して、1. 1 倍以上の余裕を持っているようにする。一方、下ナットなし方式では、第 1 層の Ds 値は上部構造の部材の Ds 値に対して 0.05 割増しとし、第 1 層の保有水平耐力は必要保有水平耐力以上になるようにする。ここで、部材群としての種別が Dの場合には、上記の規定は適用しない。

「冷間成形角形鋼管設計・施工マニュアル」(日本建築セクー)に基づいて設計する場合の、一次設計における地震時柱応力の割増し係数、あるいは、二次設計時に局部崩壊メカニズムとなるときの柱耐力の低減率は、冷間成形角形鋼管の変形性能に関する固有のものであるため、NCベース部分には適用しない。

本ハンドブックに記載のない事項は、下記の関連規準の規定による。

- ・「建築基準法・同施行令および告示」
- ・「2015年版 建築物の構造関係技術基準解説書」日本建築センター
- ・「鋼構造設計規準(2008)」日本建築学会
- ・「鋼構造限界状態設計指針・同解説(2010)」日本建築学会
- ・「コンクリート充填鋼管構造設計施工指針(2008)」日本建築学会
- ・「鋼構造接合部設計指針(2012)」日本建築学会
- ・「鋼管構造設計施工指針・同解説(1990)」日本建築学会
- ・「各種合成構造設計指針・同解説(2010)」日本建築学会
- ・「鉄筋コンクリート構造計算規準・同解説(2010)」日本建築学会
- ・「鉄筋コンクリート造建物の靭性保証型耐震設計指針・同解説(1999)」日本建築学会
- ・「鉄筋コンクリート造配筋指針・同解説(2010)」日本建築学会
- ・「建築工事標準仕様書 JASS6 鉄骨工事(2018)」日本建築学会
- ・「建築工事標準仕様書 JASS5 鉄筋コンクリート工事(2012)」日本建築学会
- ·「鉄骨工事技術指針(2018)」日本建築学会

3.1.2 NCベース柱脚の設計フロー

- 注 ※1 柱脚部ではなく、鋼管柱の柱脚側にヒンジができる接合方法
 - $\frac{1}{2}$ 2 $\frac{1}{2}$ 2 $\frac{1}{2}$ 2 $\frac{1}{2}$ 2 $\frac{1}{2}$ 3 $\frac{1}{2}$ 4 (筋違の β による応力割増し値)とする
 - ※3 部材群としての種別が Dの場合は、適用しない
 - ※4 「N C ベース検定プログラム」を御利用下さい。

それ以外の場合は、「存在せん断力≦せん断耐力」を、本ハンドブックに従って御確認下さい。

- ※5 本ハンドブック「3.4.2柱型部の評定上の条件」を満足する場合は、検定不要です。
- ※6 標準品ベースプレートを採用する場合は、検討済のため検定不要です。
- ※7 付録編の付1「RC基礎柱型の詳細設計例」を御参考の上、「N C ベース検定プログラム」を御利用下さい。 また、「鉄筋コンクリート構造計算規準・同解説(2010)」(日本建築学会)による設計も可能です。
- なお、冷間成形角形鋼管柱の場合、地震時の柱応力割増係数、柱耐力低減率はNCベース部分には適用しません。

図3.1.1 NCベース柱脚工法を用いた柱脚の設計フロー

- 3.2 架構解析時の NC ベース柱脚の仮定
 - 3.2.1 架構解析時の前提条件
 - 1) 柱脚部の回転剛性を考慮した架構解析を行い、柱脚部の設計応力(M_b :曲げモルト、 N_b :軸力、 Q_b :せん断力)を求める。その際、 ν ート1-2による場合は偏心率を、 ν ート2あるいは ν ート3による場合は、層間変形角、剛性率及び偏心率を確認する。
 - 2) 柱部材の耐力に対応したNC ベースの型式を仮定する。 中空鋼管柱に対して、標準的な組合せの型式の表を作成した。

想定した柱断面に対応した型式仮定表を「付録編の付2」に示す。

柱脚の存在応力によっては、この表以外の型式を使用することが出来る。

なお、充填型鋼管コンクリート構造に対しては、充填コンクリート強度およびコンファイント、効果考慮の有無によって、充填型鋼管コンクリート柱の耐力が変わるため、「付録編の付1柱脚部の耐力図」を参考に適切な $NC \land \neg z$ 型式を選定してください。

3) 型式仮定表において当該柱脚に組み合わされる柱の内、代表的な柱の想定軸力時(柱の降伏軸力の 0.2 倍程度)の NC ベースの回転剛性の値を、表 3.2.1、表 3.2.2 に示す。

通常、実建物の応力状態では、柱の軸力変動に伴なう回転剛性の変化が反曲点高さに及ぼす影響 は小さいことから、本表の値を用いて架構解析を行うことができる。

また、柱と柱脚の組合せで回転剛性を (3.2.1) 式を用いて個別に計算することも可能である。

上記の解析は、市販の汎用構造計算プログラムを用いることで、より簡便に行うことができる。 NCベース柱脚工法が組み込まれているプログラムは、以下の通りである。

- 「Super Build/SS3* /SS7」 (ユニオンシステム(株))
- 「BUS5 /6」 (株)構造システム)
- 「BUILD. 一貫 V」 (㈱構造 ソフト)
- · 「BRAIN─Ⅱ」 (TIS(株))
- ・ 「SEIN La CREA」 (株)NTTデータ)
- 「エース許容」 (㈱東京デンコー)

※:SS3 ご使用時は、旧製品 NC ベース EX II の型式を選択してください。

3.2.2 柱脚部の回転剛性の評価式および回転剛性値

柱脚部の回転剛性 KBSは、軸力を考慮して、(3.2.1)式で評価する。

アンカーボ 小: 4本、8本、12本 共通

$$K_{BS} = \{1/(1-\beta) \cdot d_t/(d_t+d_c)\} \times \{E \cdot n_t \cdot A_b \cdot (d_t+d_c)^2/L_b\}$$
(3. 2. 1)

ここで E: アンカーボルトのヤング係数

nt:引張側アンカーボルトの本数

A_b: アンカーボルト軸部の断面積

L_b: アンカーボルトの長さ

d:: 柱断面図心より引張側アンカーボルト断面群の図心までの距離

d。: 柱断面図心より圧縮側の柱(フランジ)外縁までの距離

 $\beta = N \cdot d_c / Ma$

N:長期想定軸力(柱の降伏軸力の0.2倍程度)

Ny: 柱の降伏軸力

Ma = min (柱の降伏曲げ耐力、柱脚部の短期許容曲げ耐力)

ただし、βの評価においては、

 $-0.15 \le N/Ny \le 0.30^{*1}$

 $\beta > 0.72$ の場合 $\beta = 0.72$ とする。

※1:柱の存在応力の適用範囲を規定するものではありません。

上式は、「鋼構造設計接合部設計指針(2012)」(日本建築学会)の評価式に準拠し、実験により得られた結果を反映したものである。

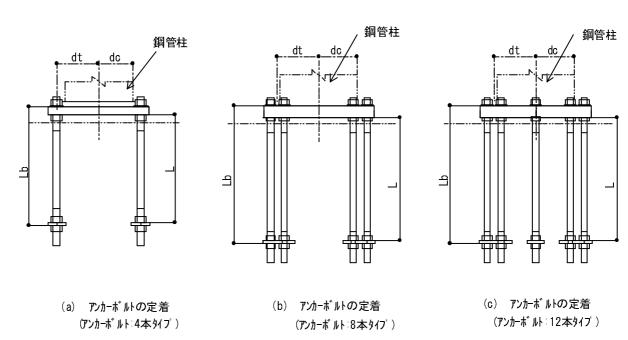


図 3.2.2 アンカーボルトの定着

(単位: 10³kNm/rad) 表 3.2.1 NCベースの回転剛性(角形鋼管用標準型)

4 本タイ	イプ		8 本 夕	7イプ	12 本タイ		イプ
型式	回転剛性	型式	回転剛性	型式	回転剛性	型式	回転剛性
PS-150-4C-24	14. 4	PK-350-8S-30	107	PK-650-8S-42	583	PK-700-12S-42	873
PS-175-4C-24	17. 9	PK-350-8M-36	170	PK-650-8S-48	851	PK-700-12S-48	1, 190
PS-200-4C-24	22.7	PK-350-8M-42	200	PK-650-8L-56	934	PK-700-12L-56	1, 310
PS-200-4S-27	28. 9	PK-400-8S-30	145	PK-650-8X-64	1, 060	PK-700-12X-64	1, 510
PS-200-4M-30	33. 5	PK-400-8M-36	253	PK-650-8WX-72	1, 200	PK-750-12S-48	1, 380
PS-250-4C-24	35. 9	PK-400-8L-42	289	PK-700-8S-42	626	PK-750-12S-56	1, 570
PS-250-4S-27	45. 2	PK-450-8C-30	263	PK-700-8S-48	856	PK-750-12M-64	1, 790
PS-250-4M-30	50.8	PK-450-8S-36	288	PK-700-8L-56	1, 080	PK-750-12L-72	2,020
PS-250-4L-36	62.8	PK-450-8M-42	355	PK-700-8X-64	1, 230	PK-800-12S-48	1, 470
PS-300-4S-27	56. 4	PK-450-8L-48	414	PK-700-8WX-72	1, 380	PK-800-12S-56	1, 710
PS-300-4M-30	82.7	PK-500-8C-30	266	PK-750-8S-48	862	PK-800-12M-64	1, 880
PS-300-4L-36	105	PK-500-8C-36	374	PK-750-8S-56	1, 170	PK-800-12L-72	2, 230
PS-300-4L-42	125	PK-500-8S-42	450	PK-750-8M-64	1, 380	PK-850-12C-48	1, 610
PS-350-4C-30	90.3	PK-500-8M-48	497	PK-750-8L-72	1, 570	PK-850-12S-56	1, 730
PS-350-4S-36	114	PK-500-8X-56	571	PK-800-8S-48	957	PK-850-12M-64	1, 920
PS-350-4M-42	127	PK-550-8C-36	382	PK-800-8S-56	1, 290	PK-850-12L-72	2, 310
PS-350-4L-48	167	PK-550-8S-42	478	PK-800-8M-64	1, 400	PK-900-12C-48	1, 700
PS-400-4C-30	124	PK-550-8M-48	610	PK-800-8L-72	1, 590	PK-900-12S-56	1, 950
PS-400-4S-36	136	PK-550-8X-56	645	PK-850-8C-48	1, 130	PK-900-12M-64	2, 160
PS-400-4M-42	170	PK-550-8WX-64	736	PK-850-8S-56	1, 330	PK-900-12L-72	2, 380
PS-400-4L-48	201	PK-600-8S-42	579	PK-850-8M-64	1, 660	PK-950-12S-48	1, 790
PS-400-4X-56	245	PK-600-8M-48	696	PK-850-8L-72	1, 860	PK-950-12S-56	2, 240
		PK-600-8L-56	815	PK-900-8C-48	1, 320	PK-950-12M-64	2, 720
		PK-600-8X-64	1040	PK-900-8S-56	1, 560	PK-950-12L-72	3, 080
				PK-900-8M-64	1,810	PK-1000-12S-48	2,000
				PK-900-8L-72	2, 040	PK-1000-12S-56	2,660
						PK-1000-12M-64	2, 790
						PK-1000-12L-72	3, 180

(特に大きい圧縮力の対応用)

(単位:10³kNm/rad) 型式 回転剛性 型式 型式 回転剛性 型式 回転剛性 回転剛性 PK-350-8B-42 184 PK-500-8B-56 620 PK-650-8B-64 1, 160 PK-800-8B-64 1,576 PK-400-8B-42 304 PK-550-8B-56 751 PK-700-8B-64 1, 360 PK-850-8B-64 1, 744 PK-450-8B-48 PK-600-8B-64 1,020 PK-750-8B-64 438 1,403 PK-900-8B-64 1, 913

表 3.2.2 NCベースの回転剛性 (円形鋼管用標準型) (単位:10³kNm/rad)

4本タイ	イプ		8 本タイプ					
型式	回転剛性	型式	回転剛性	型式	回転剛性			
PC-200-4S-24	24.8	PM-400-8S-30	188	PM-650-8S-42	551			
PC-250-4S-24	32.4	PM-400-8S-36	226	PM-650-8S-48	720			
PC-300-4S-24	47. 3	PM-450-8C-36	238	PM-650-8M-64	813			
PC-300-4S-30	65. 2	PM-450-8S-36	252	PM-700-8S-42	654			
PC-350-4S-30	83. 3	PM-450-8S-42	391	PM-700-8S-48	756			
PC-350-4S-36	103	PM-500-8C-36	289	PM-700-8M-64	898			
PC-400-4S-36	131	PM-500-8S-42	420	PM-750-8S-48	875			
PC-400-4S-42	166	PM-500-8S-48	528	PM-750-8S-56	912			
		PM-500-8M-56	640	PM-750-8M-64	1, 110			
		PM-550-8C-36	370	PM-800-8S-48	974			
		PM-550-8S-42	506	PM-800-8S-56	1, 170			
		PM-550-8S-48	595	PM-800-8M-64	1, 320			
		PM-550-8M-56	694	PM-850-8S-48	1,000			
		PM-600-8C-36	427	PM-850-8S-56	1, 340			
		PM-600-8S-42	548	PM-900-8S-48	1, 150			
		PM-600-8S-48	662	PM-900-8S-56	1,520			
		PM-600-8M-64	745					

3.3 NC ベース柱脚部の耐力および耐力式

3.3.1 NC ベース柱脚部の軸力および曲げ耐力

仮定した型式(ベースプレートとアンカーボルトの組合せ)の柱脚部の長期許容耐力、短期許容耐力および終局耐力が、対応する柱脚設計応力の M_b 、 N_b より大きくなることを確認する。

「NC ベース柱脚検定プログラム」または「NC ベース耐力線図(付1)」による。

また、保有水平耐力を検討する場合は、柱脚部の終局耐力を考慮した架構の保有水 平耐力が、架構の必要保有水平耐力を上回っていることを確認する。

柱脚部の各型式の耐力曲線図(N, M)を「付録編の付1」に示す。

この中で、柱鋼管側ではなく柱脚部側にヒンジができる場合において、下ナット方式では、第1層のDs値の割増しは不要とする。ただし、第1層の保有水平耐力が必要保有水平耐力に対して、1.1倍以上の余裕をもっているようにする。一方、下ナットなし方式では、第1層のDs値は上部構造の部材のDs値に対して0.05割増しを行い、第1層の保有水平耐力が必要保有水平耐力以上であることを確認する。

但し、部材群の種別がDの場合には、Ds値の割増しは不要であり、必要保有水平耐力に対する1.1倍以上の余裕も必要ない。

検定に際しては、「NCベース柱脚検定プログラム」を活用すると、簡便に行うことができる。また、市販の汎用構造計算プログラムの計算結果の柱脚データを直接インポートすることも可能になっている。詳細は、NCベースのHPを参照して下さい。

3.3.2 柱脚部の耐力評価

柱脚部の耐力評価は、アンカーボルト: 4 本タイプの場合は図 3.3.1(a)および表 3.3.3(a)に、アンカーボルト: 8 本タイプの場合は図 3.3.1(b)および表 3.3.3(b)に、アンカーボルト:12 本タイプの場合は図 3.3.1(c)および表 3.3.3(c)による。

アンカーボルト1本当りの降伏軸力 T、およびコンクリートの許容支圧応力度 F,は、下式で求める。

a) 長期許容耐力時

$$T_a = (1/1.5) \cdot A_s \cdot F$$
 (3.3.1)

$$F_n = 1/3 \cdot F_c$$
 (3.3.2)

ここで、A。: アンカーボルトのネジ部の有効断面積(表 3.3.1 による) F。'=1.1xF。

b) 短期許容耐力時

$$T_v = A_s \cdot F \tag{3.3.3}$$

$$F_n = 2/3 \cdot F_c$$
 (3.3.4)

c)終局耐力時

$$T_{ij} = A_{b} \cdot F \tag{3.3.5}$$

$$F_n = 0.85 \cdot F_c$$
 (3.3.6)

ここで、A_b: アンカーボルトの軸部の断面積(表 3.3.1 による)

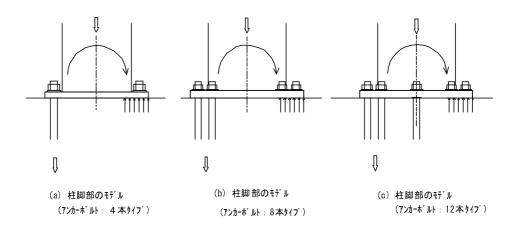


図 3.3.1 柱脚部の耐力評価

表 3.3.1 アンカーボルトの断面積

呼 径	M24	M27	M30	M36	M42	M48	M56	M64	M72
ネジ部有効断面積 A _s (mm²)	353	459	561	817	1, 120	1, 470	2,030	2,680	3, 460
軸部断面積 A _b (mm ²)	452	573	707	1,018	1, 385	1,810	2, 463	3, 217	4,072

コンクリートの支圧強度 Fb は、柱脚の支承面積と支圧面積の比から、(3.3.7)式で評価する。

 $Fb = Fn \cdot (A_0/A_n)^{-1/3}$

(3.3.7)

ただし $(A_0/A_n)^{-1/3} \le 1.5$

A₀:支承面積、A_n:支圧面積

Fn: (3.3.4), (3.3.6) 式による

ここで、基礎RC柱型のコンクリートの支圧強度 Fb が $30 \, \text{N/mm}^2$ を超える場合は、ベースプレートの曲げ耐力を考慮して Fb= $30 \, \text{N/mm}^2$ とする。

アンカーボルトの降伏軸力は、表 3.3.2 による。

表 3.3.2 アンカーボルトの降伏軸力

呼径	軸径	ネシ゛ピッ	紗゛部断面	軸部断面	As/Ab	ネジ部降伏	軸部降伏軸
		Ŧ	積	積		軸力	カ
		(mm)	$As(mm^2)$	Ab(mm ²)		Ty(kN)	Tu(kN)
M24	24	3	353	452	0.78	173.0	221.7
M27	27	3	459	573	0.80	224.9	280.6
M30	30	3.5	561	707	0.79	274.9	346.4
M36	36	4	817	1,018	0.80	400.3	498.8
M42	42	4.5	1, 120	1, 385	0.81	548.8	678.9
M48	48	5	1, 470	1,810	0.81	720.3	886.7
M56	56	5.5	2,030	2, 463	0.82	994.7	1,207
M64	64	6	2, 680	3, 217	0.83	1, 313	1, 576
M72	72	6	3, 460	4,072	0.85	1, 695	1, 995

Ty=As(上表)×F(=490N/mm²)

Tu=Ab(上表)×F(=490N/mm²)

3.3.3 NC ベース柱脚部の耐力式

表 3.3.3 (a-1) 支圧強度を考慮した柱脚部の短期許容耐力式 (アンカーボルト: 4本タイプ)

	応力状態	軸力	Nの範囲	M-N 関係式
(1) 圧縮	$\begin{array}{c c} & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$	• • • • • • • • • • • • • • • • • • •	• •	$My = \frac{1}{2}N \cdot D \left\{1 - \left(\frac{N}{N_0}\right)^{3/2}\right\}$
(2) 圧縮		N ₁	\geq N $>$ N ₂	$My = -N \cdot d_1 + \frac{1}{2}N_0 \cdot L_1 \left(\frac{L_1}{D}\right)^{2/3}$
(3) 圧縮	2T 111111111111111111111111111111111111	ф • N ₂	0 •	$My = \frac{1}{2}(N+2T)D \left\{1 - \left(\frac{N+2T}{N_0}\right)^{3/2}\right\} + 2T \cdot d_1$
(4) 圧縮	2T 111111111111111111111111111111111111	o o o		$My = My_{ N=N3} + (My_{ N=N4} - My_{ N=N3}) \cdot \frac{N}{N_4}$
(5) 引張	2T	o N ₄	lacksquare	My= $(N+4T) d_1 + \frac{1}{2}N_0 \cdot L_2 \cdot \frac{L_2}{D}$
(6) 引張	2T ↓ Û L	o o	lacksquare	$My = \frac{1}{2}(N+4T) D(1-\frac{N+4T}{N_0})$

応力状態の表示で、圧縮=圧縮側領域、引張=引張側領域を示す。

N:軸力 My: 短期許容曲げ耐力 D, B: ベースプレートの縦幅、横幅

d₁:中心からアンカーボルトまでの距離

T:アンカーボルトネジ部の降伏軸力(1本当たり As・F) As:ネジ部断面積

 $L_1 = (D+2d_1)/2$ $L_2 = (D-2d_1)/2$

Fn: コンクリートの許容支圧応力度 (=2/3・1.1・Fc)

Fb:部分支圧強度 Fb=Fn · (A₀/An) 1/3

 $N_0=F_0 \cdot B \cdot D$ $N_1=(L_1/D)^{2/3} \cdot N_0$

 $N_2 = (L_1/D)^{2/3} \cdot N_0 - 2T$ $N_3 = (L/D)^{2/3} \cdot N_0 - 2T = 0$

 $N_4 = (L_2/D)N_0 - 2T$ $N_5 = (L_2/D)N_0 - 4T$ $N_6 = -4T$

表3.3.3 (a-2) 支圧強度を考慮した柱脚部の終局耐力式 (アンカーボルト: 4本タイプ)

	応力状態	軸力	N の範囲	M-N 関係式
(1) 圧縮	$\begin{array}{c c} & & & \\ & & & \\ \hline & & & \\ & &$	N ₀	\geq N> N_1	$Mu = \frac{1}{2}N \cdot D \left\{1 - \left(\frac{N}{N_0}\right)^{3/2}\right\}$
(2) 圧縮		N ₁	\geq N $>$ N ₂	$Mu = -N \cdot d_1 + \frac{1}{2}N_0 \cdot L_1 \left(\frac{L_1}{D}\right)^{2/3}$
(3) 圧縮	2T 111111111111111111111111111111111111	N ₂	0 •	$Mu = \frac{1}{2}(N+2T)D \left\{1 - \left(\frac{N+2T}{N_0}\right)^{3/2}\right\} + 2T \cdot d_1$
(4) 圧縮	2T 111111	N ₃ =0	$\stackrel{\circ}{\triangleright}$ N_4	$Mu = Mu_{ _{N=N3}} + (Mu_{ _{N=N4}} - Mu_{ _{N=N3}}) \cdot \frac{N}{N_4}$
(5) 引張	2T \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	o • N ₄	$\stackrel{lack}{=}$ $N>$ N_5	Mu= $(N+4T) d_1 + \frac{1}{2} N_0 \cdot L_2 \cdot \frac{L_2}{D}$
(6) 引張	2T \$\frac{1}{2} \tag{L}	o o o	$egin{array}{cccc} oldsymbol{\circ} & oldsymbol{\circ} \\ oldsymbol{\circ} & oldsymbol{\circ} \\ \geq N> & N_6 \end{array}$	$Mu = \frac{1}{2}(N+4T) D(1-\frac{N+4T}{N_0})$

N:軸力 Mu:終局曲げ耐力 D,B:ベースプレートの縦幅、横幅

d₁:中心からアンカーボルトまでの距離

T:アンカーボルト軸部の降伏軸力(1本当たり Ab·F) Ab:軸部断面積

 $L_1 = (D+2d_1)/2$ $L_2 = (D-2d_1)/2$

Fn: コンクリートの支圧耐力 (=0.85・1.1・Fc)

Fb:部分支圧強度 Fb=Fn • (A₀/An) 1/3

 $N_0 = Fn \cdot B \cdot D$ $N_1 = (L_1/D)^{2/3} \cdot N_0$

 $N_2 = (L_1/D)^{2/3} \cdot N_0 - 2T$ $N_3 = (L/D)^{2/3} \cdot N_0 - 2T = 0$

 $N_4 = (L_2/D)N_0 - 2T$ $N_5 = (L_2/D)N_0 - 4T$

 $N_6 = -4T$

表 3.3.3 (b-1) 支圧強度を考慮した柱脚部の短期許容耐力式 (アンカーボルト:8本タイプ)

		軸力		式 () フルーホルト: 8 本タイフ) M_N 門 校士
	応力状態 N		Nの範囲	M-N 関係式
(1) 圧縮	$\begin{array}{c c} & & & \\ \hline \end{array}$	N ₀	\geq N> N_1	$My = \frac{1}{2}N \cdot D\{1 - (\frac{N}{N_0})^{3/2}\}$
(2) 圧縮	Lı	N ₁		$My = -N \cdot d_1 + \frac{1}{2}N_0 \cdot L_1 \left(\frac{L_1}{D}\right)^{2/3}$
(3) 圧縮	2T	N ₂	o o o o o o o o o o o o o o o o o o o	$My = \frac{1}{2}(N+2T) D \left\{1 - \left(\frac{N+2T}{N_0}\right)^{3/2}\right\} + 2T \cdot d_1$
(4) 圧縮	2T L ₂	N ₃	$ \stackrel{\bullet}{\triangleright} \stackrel{\bullet}{\bullet} = N $ $ \stackrel{\bullet}{\geq} N > N_4 $	$My = -N \cdot d_2 + 2T(d_1 - d_2) + \frac{1}{2}N_0 \cdot L_2 \left(\frac{L_2}{D}\right)^{2/3}$
(5) 圧縮	2T 2T 2T	N ₄	°° °° °° °° °° °° °° °° °° °° °° °° °°	$My = \frac{1}{2}(N+4T) D \left\{1 - \left(\frac{N+4T}{N_0}\right)^{3/2}\right\} + 2T(d_1+d_2)$
(6) 圧縮	2T 2T	N ₅	°° •• ≥N> N ₆	$My = \frac{1}{2}(N+4T) D \left\{1 - \frac{N+4T}{N_0} \right\}$ $(1.5-0.5 \cdot \frac{(N-N_5)^2}{(N_6-N_5)^2}) + 2T(d_1+d_2)$
(7) 引張	2T L ₃	N ₆	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	My= N • $d_2+2T(d_1+3d_2)+\frac{1}{2}N_0 • L_3\frac{L_3}{D}$
(8)	2T 2T 2T	N ₇	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	$My = \frac{1}{2}(N+6T) D(1-\frac{N+6T}{N_0}) + 2T \cdot d_1$

	応力状態	態	軸力	Nの範囲		M-N 関係式
(9) 引張	2T2T	2T \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0 0	°°	°°°	$My = N \cdot d_1 + 8T \cdot d_1 + \frac{1}{2}N_0 \cdot L_4 \frac{L_4}{D}$
			N_8	\ge N>	N_9	
(10) 引張	2Т 🕠 2Т	2T 12T	° ° °	°°	°°	$My = \frac{1}{2}(N+8T)D(1-\frac{N+8T}{N_0})$
	!		N_9	\ge N>	N_{10}	

N:軸力 My: 短期許容曲げ耐力 D, B: ベースプレートの縦幅、横幅

d₁, d₂: 中心からアンカーボルトまでの距離(d1:外側, d2:内側)

T:アンカーボルトネジ部の降伏軸力(1本当たり As・F) As:ネジ部断面積

 $L_1 = (D+2d_1)/2$ $L_2 = (D+2d_2)/2$ $L_3 = (D-2d_2)/2$ $L_4 = (D-2d_1)/2$

Fn: コンクリートの許容支圧応力度 (=2/3・1.1・Fc)

Fb:部分支圧強度 Fb=Fn • (A₀/An) ^{1/3}

 $N_8 = (L_4/D) N_0 - 6T$ $N_9 = (L_4/D) N_0 - 8T$ $N_{10} = -8T$

表3.3.3 (b-2) 支圧強度を考慮した柱脚部の終局耐力式 (アンカーボルト:8本タイプ)

			の範囲	アンガーホルト: 8本タイフ) M-N 関係式
	応力状態 N	中田ノJ N	マノ甲山(力)	M-N 美/ 床人
(1) 圧縮	$\begin{array}{c c} & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ \hline & & & \\ & & & \\ \hline \\ \hline$	N_0 \geq	\geq N	$Mu = \frac{1}{2}N \cdot D\{1 - (\frac{N}{N_0})^{3/2}\}$
(2) 圧縮	Li	$N_1 \geq 0$	⋄ •• • • • • • • • • • • • • • • • • •	$Mu = -N \cdot d_1 + \frac{1}{2}N_0 \cdot L_1 \left(\frac{L_1}{D}\right)^{2/3}$
(3) 圧縮	2T 111111111111111111111111111111111111	N_2	• • • • • • • • • • • • • • • • • • •	Mu= $\frac{1}{2}$ (N+2T) D $\{1-(\frac{N+2T}{N_0})^{3/2}\}$ +2T • d ₁
(4) 圧縮	2T L ₂	N ₃ ≥	$\stackrel{\circ}{\circ}$ $\stackrel{\bullet}{\circ}$ $\stackrel{\bullet}$	$Mu = -N \cdot d_2 + 2T(d_1 - d_2) + \frac{1}{2}N_0 \cdot L_2 \left(\frac{L_2}{D}\right)^{2/3}$
(5) 圧縮	2T 2T 2T	o	°	$Mu = \frac{1}{2}(N+4T) D \left\{1 - \left(\frac{N+4T}{N_0}\right)^{3/2}\right\} + 2T(d_1+d_2)$
(6) 圧縮	2T 2T	°	°°	$Mu = \frac{1}{2}(N+4T) D \left\{1 - \frac{N+4T}{N_0} \right\}$ $(1.5-0.5 \cdot \frac{(N-N_5)^2}{(N_6-N_5)^2}) + 2T(d_1+d_2)$
(7)	$2T$ \downarrow	°° • • • • • • • • • • • • • • • • • •	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	Mu= N • $d_2+2T(d_1+3d_2)+\frac{1}{2}N_0 • L_3\frac{L_3}{D}$
(8) 引張	2T 2T 2T	°° °° °° °° °° °° °° °° °° °° °° °° °°	$\stackrel{\circ}{\sim}$ $\stackrel{\circ}$	$Mu = \frac{1}{2} (N+6T) D \left(1 - \frac{N+6T}{N_0}\right) + 2T \cdot d_1$

	応力状態	5RG	軸力	Nの範囲		M-N 関係式
(9)	2T 2T	2T \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	N ₈	°° °° °° °° °° °° °° °° °° °° °° °° °°	N ₉	$Mu = N \cdot d_1 + 8T \cdot d_1 + \frac{1}{2}N_0 \cdot L_4 \frac{L_4}{D}$
(10)	2T 2T	2T 1 2T	N ₈	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	N ₉	$Mu = \frac{1}{2}(N+8T) D(1-\frac{N+8T}{N_0})$

N:軸力 Mu:終局曲げ耐力 D,B:ベースプレートの縦幅、横幅

d₁, d₂: 中心からアンカーボルトまでの距離(d1:外側, d2:内側)

T:アンカーボルト軸部の降伏軸力(1本当たり Ab·F) Ab:軸部断面積

 $L_1=(D+2d_1)/2$ $L_2=(D+2d_2)/2$ $L_3=(D-2d_2)/2$ $L_4=(D-2d_1)/2$

Fn: コンクリートの支圧耐力 (=0.85・1.1・Fc)

Fb:部分支圧強度 Fb=Fn • (A₀/An) ^{1/3}

 $N_8 = (L_4/D) N_0 -6T$ $N_9 = (L_4/D) N_0 -8T$ $N_{10} = -8T$

表 3.3.3 (c-1) 支圧強度を考慮した柱脚部の短期許容耐力式 (アンカーボルト: 1 2 本タイプ)

	: 3. 3. 3 (C-1) 文圧强度を考 応力状態	軸力	N の範囲	式 ()/) -ベ ハト: I 2 本タイフ) M-N 関係式
	ルフルス語 N	中山ノノ	N V J BEIZE	MINIXI
(1) 圧縮	$\begin{array}{c c} & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & \\ \hline & & & \\ \hline & \\ \hline & & \\ \hline & & \\ \hline \\ \hline$	N_0	\geq N> N ₁	$My = \frac{1}{2}N \cdot D\{1 - \left(\frac{N}{N_0}\right)^{3/2}\}$
(2) 圧縮		N ₁	\geq N $>$ N ₂	$My = -N \cdot d_1 + \frac{1}{2}N_0 \cdot L_1 \left(\frac{L_1}{D}\right)^{2/3}$
(3) 圧縮	3T	N_2	\geq N> N ₃	My= $\frac{1}{2}$ (N+3T) D $\left\{1 - \left(\frac{N+3T}{N_0}\right)^{3/2}\right\} + 3T \cdot d_1$
(4) 圧縮	$3T$ $\downarrow L_2$	N ₃	\geq N $>$ N ₄	$My = -N \cdot d_2 + 3T (d_1 - d_2) + \frac{1}{2} N_0 \cdot L_2 \left(\frac{L_2}{D}\right)^{2/3}$
(5) 圧縮	3T 2T 2T	N ₄	° • •	$My = \frac{1}{2}(N+5T) D \left\{1 - \left(\frac{N+5T}{N_0}\right)^{3/2}\right\} + T (3d_1+2d_2)$
(6) 圧縮	3T 2T 11 12 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	$\stackrel{\circ}{\sim}\stackrel{\circ}{\sim}\stackrel{\bullet}{\circ}$	$My = \frac{1}{4}N_0D(1/2)^{2/3} + T(3d_1 + 2d_2)$
(7) 圧縮	3T	N ₆	$ \begin{array}{c cccc} & \circ & \circ & \bullet \\ & \circ & \circ & \bullet \\ & \circ & \circ & \bullet \\ & & & & \bullet \end{array} $ $ \geq N > N_7 $	$\begin{aligned} \text{My} &= \frac{1}{2} (\text{N+7T}) \text{D} \{ 1 - \left(\frac{\text{N+7T}}{\text{N}_0} \right)^{3/2} \} \\ &+ \text{T} \left(3 d_1 + 2 d_2 \right) \end{aligned}$
(8) 圧縮	3T 2T 2T 2T	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		$My = T(3d_1+2d_2) + (N+7T)D/2 \cdot \{1 - (\frac{N+7T}{N_0}) / (1.5-0.5 \cdot \frac{(N-N_7)^2}{(N_8-N_7)^2})\}$
		N_7	\geq N> N ₈	

	応力状態	軸力 Nの範囲	M-N 関係式
(9) 引張	$3T$ $2T$ $2T$ L_4	N_8 $\geq N > N_9$	My= N • d_2 +T $(3d_1+9d_2)+\frac{1}{2}N_0$ • $L_4\frac{L_4}{D}$
(10) 引張	3T 2T 2T 1	N_9 $\geq N > N_{10}$	$My = \frac{1}{2}(N+9T) D(1-\frac{N+9T}{N_0}) + 3T \cdot d_1$
(11) 引張	2T $2T$ $2T$ 1 1 1 1 1 1 1 1 1 1	N_{10} $\geq N > N_{11}$	$My = N \cdot d_1 + 12T \cdot d_1 + \frac{1}{2}N_0 \cdot L_5 \frac{L_5}{D}$
(12) 引張	3T 2T 2T 3T 3T	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$My = \frac{1}{2}(N+12T)D(1-\frac{N+12T}{N_0})$

N:軸力 My: 短期許容曲げ耐力

D, B: ベースプレートの縦幅、横幅

 d_1, d_2 : 中心からアンカーボルトまでの距離 (d1:外側, d2:内側)

 $T: アンカーボルトネジ部の降伏軸力(1 本当たり As・F) As: ネジ部断面積 <math>L_1=(D+2d_1)/2$ $L_2=(D+2d_2)/2$ $L_3=D/2$ $L_4=(D-2d_2)/2$ $L_5=(D-2d_1)/2$

Fn: コンクリートの許容支圧応力度 (=2/3・1.1・Fc)

Fb:部分支圧強度 Fb=Fn • (A₀/An)^{1/3}

 $N_{8} = (L_{4}/D) N_{0} - 7T \qquad N_{9} = (L_{4}/D) N_{0} - 9T \qquad N_{10} = (L_{5}/D) N_{0} - 9T \qquad N_{11} = (L_{5}/D) N_{0} - 12T \qquad N_{12} = -12T$

表 3.3.3 (c-2) 支圧強度を考慮した柱脚部の終局耐力式 (アンカーボルト:12本タイプ)

	応力状態	軸力	Nの範囲	M-N 関係式			
(1) 圧縮	$\begin{array}{c c} & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ \hline & & & \\ & & & \\ \hline & & \\ \hline & \\ \hline$	N ₀	• • •	$Mu = \frac{1}{2}N \cdot D\{1 - \left(\frac{N}{N_0}\right)^{3/2}\}$			
(2) 圧縮		N ₁	\geq N $>$ N ₂	$Mu = -N \cdot d_1 + \frac{1}{2}N_0 \cdot L_1 \left(\frac{L_1}{D}\right)^{2/3}$			
(3) 圧縮	3T - 1	N ₂	\geq N> N ₃	Mu= $\frac{1}{2}$ (N+3T) D $\left\{1 - \left(\frac{N+3T}{N_0}\right)^{3/2}\right\} + 3T \cdot d_1$			
(4) 圧縮	$3T$ L_2	N ₃	$ \stackrel{\circ}{\triangleright} \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bullet} $ $ \stackrel{\circ}{\triangleright} \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bullet} $	$Mu = -N \cdot d_2 + 3T (d_1 - d_2) + \frac{1}{2} N_0 \cdot L_2 \left(\frac{L_2}{D}\right)^{2/3}$			
(5) 圧縮	3T	N ₄	\geq N $_{5}$	$Mu = \frac{1}{2}(N+5T) D\{1 - \left(\frac{N+5T}{N_0}\right)^{3/2}\} + T(3d_1+2d_2)$			
(6) 圧縮	3T 2T L ₃	°° • • • • • • • • • • • • • • • • • •	$ \stackrel{\circ}{\overset{\circ}{\circ}} \stackrel{\bullet}{\overset{\bullet}{\circ}} \stackrel{\bullet}{\overset{\bullet}{\circ}} $	$Mu = \frac{1}{4}N_0D(1/2)^{2/3} + T(3d_1 + 2d_2)$			
(7) 圧縮	3T 2T 2T 2T	N ₆	$ \begin{array}{c cccc} & \circ & \circ & \bullet \\ & \circ & \circ & \bullet \\ & \circ & \circ & \bullet \\ & & & & & \\ & & & & & \\ & & & & & $	$Mu = \frac{1}{2}(N+7T) D\{1 - \left(\frac{N+7T}{N_0}\right)^{3/2}\} + T(3d_1+2d_2)$			
(8) 圧縮	3T	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\geq N> N ₈	Mu= T(3d ₁ +2d ₂)+ (N+7T)D/2 • $ \{1-\left(\frac{N+7T}{N_0}\right)/(1.5-0.5 \cdot \frac{(N-N_7)^2}{(N_8-N_7)^2})\} $			

	 応力状態	軸力 Nの範囲	M-N 関係式		
(9) 引張	$3T$ $2T$ $2T$ L_4	N_8 $\geq N > N_9$	Mu= N • d_2 +T $(3d_1+9d_2)+\frac{1}{2}N_0$ • $L_4\frac{L_4}{D}$		
(10) 引張	I	N_9 $\geq N > N_{10}$	$Mu = \frac{1}{2}(N+9T) D(1-\frac{N+9T}{N_0}) + 3T \cdot d_1$		
(11) 引張	1 1 1 1	N_{10} $\geq N > N_{11}$	$Mu= N \cdot d_1+12T \cdot d_1+\frac{1}{2}N_0 \cdot L_5\frac{L_5}{D}$		
(12) 引張		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Mu = \frac{1}{2}(N+12T) D \left(1 - \frac{N+12T}{N_0}\right)$		

N:軸力 Mu:終局曲げ耐力 D,B:ベースプレートの縦幅、横幅

d₁, d₂: 中心からアンカーボルトまでの距離(d1:外側, d2:内側)

T:アンカーボルト軸部の降伏軸力(1本当たり Ab·F) Ab:軸部断面積

 $L_1 = (D+2d_1)/2$ $L_2 = (D+2d_2)/2$ $L_3 = D/2$ $L_4 = (D-2d_2)/2$ $L_5 = (D-2d_1)/2$

Fn: コンクリートの許容支圧応力度 (=0.85・1.1・Fc)

Fb:部分支圧強度 Fb=Fn • (A₀/An) ^{1/3}

 $N_{8} = (L_{4}/D) N_{0} - 7T N_{9} = (L_{4}/D) N_{0} - 9T N_{10} = (L_{5}/D) N_{0} - 9T N_{11} = (L_{5}/D) N_{0} - 12T N_{12} = -12T$

3.3.4 柱脚部せん断力の検討

(1) 検討の前提

本工法では、ベースプレートのアンカーボルト孔径をボルト径+5mm以上としているが、アンカーボルト孔クリアランスへのシール材の注入効果を実験で確認していることから、以下の前提に立っている。

- ①アンカーボルトのせん断耐力の低減は行わない。
- ②座金のベースプレートへの溶接は不要とする。
- (2) 柱のせん断力の伝達

柱のせん断力Qbは、下記の何れかの方法で基礎に伝達する。

- ①ベースプレート下面とコンクリートとの間の摩擦力による方法
- ②アンカーボルトのせん断耐力による方法
- ③柱前面のコンクリートの支圧抵抗による方法 (柱前面に負担できる スラブコンクリート等 がある場合のみ)
- ④ ベースプレート下面に溶接したシャープレート等による方法

尚、③の柱前面のコンクリートの支圧抵抗による方法は、①あるいは②と併用する ことが出来る。また、④の方法による場合は、設計者様の独自設計による。

(3) 柱のせん断力の検定

柱のせん断力Qbは、(3.3.8)式を満足していることを確認する。

短期時
$$Qb_a \leq Q_a$$
 終局時 $Qb_u \leq Q_u$ (3.3.8)

ここで、短期許容せん断耐力Q。、及び終局せん断耐力Q。は、(3.4.18)式による。

$$Q_{a} = \max (Q_{a0}, Q_{a1}) + Q_{a2}$$

$$Q_{u} = \max (Q_{u0}, Q_{u1}) + Q_{u2}$$
(3.3.9)

a) 短期時

Qa0: 摩擦力による許容せん断耐力。摩擦係数は 0.4 とする。

$$Q_{a0} = 0.4(N_b + T_D)$$
 (3.3.10) $N_b : 柱の軸力$ $T_D : 7 \vee h - \pi^* h \wedge \eta \cap \eta$ 張力((3.4.3)式による)

Q al : アンカーボルトの降伏せん断耐力**1

せん断耐力はTvhーボルに生じる引張力とせん断力の組合せを考慮して、「鋼構造接合部設計指針(2006)」(日本建築学会)により算定する。 Tvhーボルトの一本当たりせん断耐力は、 $Ty/\sqrt{3}$ を上限とする。

 Q_{a2} : 柱側面のコンクリート支圧抵抗力(柱前面に負担できるスラブコンクリート等がある場合のみ) $Q_{a2} = 2/3 \cdot Fc' \cdot Sc \qquad (3.3.11)$

Fc':1.1xFc

Sc: スラブコンクリートに埋め込まれている柱断面積とベース側面積の和 = B1×d1 + D×t

B1: 柱外径

d1 : スラブ表面からベース上面までの距離 D : ベース外径 t : ベース厚

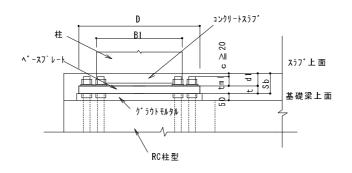


図 3.3.2 せん断力の検討

b)終局時

Quo: 摩擦力による最大せん断耐力。摩擦係数は 0.5 とする。

$$Q_{u0} = 0.5(N_b + T_D)$$
 (3.3.12) $N_b : 柱の軸力$ $T_D : アンカーボルト引張力((3.4.4)式による)$

Q ...: アンカーボルトの最大せん断耐力**1

せん断耐力はTVhーボルトに生じる引張力とせん断力の組合せを考慮して、「鋼構造接合部設計指針(2006)」(日本建築学会)により算定する。TVhーボルトの一本当たりせん断耐力は、 $Tu/\sqrt{3}$ を上限とする。

 Q_{u2} : 柱前面のコンクリート支圧抵抗力(柱前面に負担できるスラブコンクリート等がある場合のみ) $Q_{u2}=0.85 \cdot Fc' \cdot Sc$ (3.3.13)

Fc':1.1xFc

但し 径厚比が「鋼構造限界状態設計指針」による 板要素の幅厚比区分 P-II ランク以下の鋼管柱の場合は、

Q_{u2} = 2/3・Fc'・Sc とする。(短期時と同じ)

Sc: スラブコンクリートに埋め込まれている柱断面積とベース側面積の和 = B1×d1+ D×t

B1:柱外径

d1:スラブ表面からベース上面までの距離

D: \(\doldred{i}\) - \(\doldred{j}\) - \(\doldred{j}\) + \(\doldred{j}\) \(\doldred{j}\) - \(\doldred{j}\) = \(\doldred{j}\) = \(\doldred{j}\) - \(\doldred{j}\) = \(\doldred{j}\) = \(\doldred{j}\) - \(\doldred{j}\) = \(\doldred{j}\) = \(\doldred{j}\) - \(\doldred{j}\) - \(\doldred{j}\) = \(\doldred{j}\) - \(\doldred{j}\) = \(\doldred{j}\) - \(\doldred{j}\) - \(\doldred{j}\) - \(\doldred{j}\) = \(\doldred{j}\) - \(\doldre{j}\) - \(\doldre{j}\) - \(\doldre{j}\) - \(\doldre{j}\) - \(\doldre{j}\) - \(\doldre{j}\)

柱前面のコンクリート(床スラブ等)の支圧耐力による「柱脚のせん断耐力の計算例」を 「付録編の付4」に示す。

なお、上記の検討でせん断耐力が不足する場合は、不足分のせん断力をシャープレート等に 負担させ、基礎に伝達するものとする。

この場合の短期許容せん断耐力Q_a、終局せん断耐力Q_uは、(3.3.14)式による。

$$Q_{a} = Q_{a1} + Q_{a2} + Q_{a3}$$

$$Q_{u} = Q_{u1} + Q_{u2} + Q_{u3}$$
(3.3.14)

Qal、Qa2、Qul、Qu2:前記による

(Qa2、Qu2は柱前面に負担できるスラブコンクリート等がある場合のみ)

Qa3 : シヤープレート等による短期許容せん断耐力

Qu3 : シヤープレート等による終局せん断耐力

注 ※1: アンカーボルトにせん断力を負担させた場合で、水平加力方向に基礎梁や床スラブ等、反力が 取れるものがない場合は、コンクリートのコーン破壊が生じるため、「各種合成構造設計指針・ 同解説(2010)」(日本建築学会)に準拠し、下式により検討を行い小さい方の値をアン カーボルトのせん断耐力とする。

 $q_a = \phi_2 \cdot c \sigma_t \cdot A_{qc} \tag{3.3.15}$

q a: コンクリートのコーン破壊により決まるアンカーボルトの許容せん断力

。σ t : コンクリート引張強度 。σ t = 0.31√ F。

A_gc: せん断力方向の側面におけるコン状破壊面の有効投影面積

 $A_{qc} = 0.5 \pi c^2$

φ₂ : 低減係数 短期 0.6 終局 0.8 C : アンカーボルトから基礎コンクリート端部までの距離

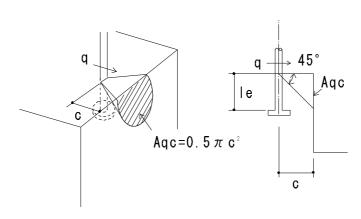


図3.3.3 側面の有効投影面積

3.4 RC 基礎柱型部の設計

3.4.1 柱型部の設計方法

柱脚部の基礎 RC 柱型の設計は、以下のいずれかの方法によることが出来る。

i) **定着したコンクリートのコーン状破壊耐力による**(3.4.5.(2) 参照) 「各種合成構造設計指針・同解説(2010)」(日本建築学会)に準拠して設計する。

ii) コーン破壊領域にある鉄筋の付着耐力による

コーン破壊領域にある立上り筋の付着耐力並びに基礎梁スクラップ形状の補強筋の引抜き耐力により設計する。この場合は、引張を生じるアンカーボルトの全引張耐力を定着できるようにする。 尚、立上り筋の短期許容付着応力度は「鉄筋コンクリート構造計算規準・同解説」により、また、

終局付着応力度は「鉄筋コンクリート造建物の靱性保証型耐震設計指針・同解説」により算定する。

また、i) のコンクリートのコーン破壊耐力は考慮しない。

この設計方法による「基礎柱型の詳細設計例」を「付録編の付1」に示す。

- *「基礎柱型の詳細設計例」は変更できます。「柱脚検定プログラム」の(赤)で計算して下さい。
- iii) 鉄筋コンクリート柱(礎柱)として設計する

柱脚部の設計応力を用いて基礎 RC 柱型を「鉄筋コンクリート構造計算規準・同解説」、および「鉄筋コンクリート造建物の靱性保証型耐震設計指針・同解説」に準拠して設計する。この場合は、骨組解析による柱脚存在応力(短期、終局)を用いてRC 柱として検定する。

*「柱脚検定プログラム」の青プログラムで計算書を作成できます。

3.4.2 柱型部の評定上の設計条件

柱型部の外径bは、下記i)~iii)の条件を満足すること。

- i) 柱型の外径 bは、ベースプレートの外径 Dの1.15 倍以上を確保すること。(図 3.4.1 参照)
- ii) ベースプレート縁は、柱型の立上り筋の芯より内側に入っていること。(図 3.4.2 参照)
- iii) コンクリートのかぶり厚さは、ワープ筋に対しては 50mm 以上、定着板に対しては 40mm 以上 とすること。

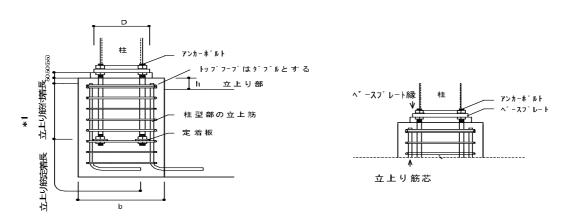


図 3.4.1 柱型部

図3.4.2 ベースプレート縁と立上り筋芯との関係

*1 礎柱をRC柱(青プログラム)で設計する場合は「RC規準の定着長」を確保する。

⚠ 注意:「付1」詳細設計例を変更する場合は、柱型の耐力、配筋納まり等を別途検討する。

- 3.4.3 立上り筋の定着長さ(図3.4.1参照)
 - i)基礎 RC 柱型の設計を上記 3.4.1-ii)で行う場合、定着長さは、定着板より上側は斜め 45°のコンクリートのコーン破壊領域に入る立上り筋部分を有効付着長さとする。

(図 3.4.3 参照) 尚、定着板より下側は「鉄筋コンクリート構造計算規準・同解説」 に準拠した定着長さをとる。

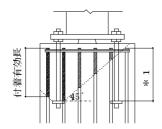


図 3.4.3 立上り筋の有効付着長さ

ii) 基礎 RC 柱型の設計を**上記 3.4.1-iii) で行う場合**、定着板の上下側とも「鉄筋コンクリート構造計算規準・同解説」等に準拠した定着長さをとる。

鉄筋コンクリート柱として計算する場合の「礎柱立上り筋の必要定着長さ」を 「付録編 付5」に示す。

△ 注意:定着板の上側で「鉄筋コンクリート構造計算規準・同解説」等に準拠した定着長さを とれない場合は、上記 3.4.1-ii)の方法で設計してください。

- 3.4.4 その他の柱型部の設計細則
 - ① 柱型の立上り部については、□-300 あるいはφ-300(318.5)までの鋼管に対して、高さ 30cm 以下の立上りを設けることができる。それ以外の場合は、鉄筋コンクリート柱として検討して下さい。

「柱脚検定プログラム」の青プログラムで検定できます。

② ベース下のグラウト厚は、表 3.4.1 の数値以上を標準とする。

表 3.4.1 グラウト厚

アンカーボルト呼径	M24	M27	M30	M36	M42	M48	M56	M64	M72
グラウト厚mm	50	50	50	50	50	50	50	50	55

グラウト幅は、ベースプレートの端から 20mm 以上出すこと。

- ③ 上ナットは、アンカーボルトの天端がコンクリートに 20mm 以上埋まる場合は、シングルナットとすることが出来る。それを満足しない場合はダブルナットとするか、戻り止めをつける。
- ④ 立上り部のフープ筋間隔は、計算間隔以下かつ@100以下とする。 フープ筋比は、0.2%以上とし、トップフープはダブルとする。

⑤ 柱型部のフープ筋間隔は、計算間隔の1.5倍以下かつ@150以下とする。 (「鉄筋コンクリート構造計算規準・同解説」の接合部扱い) フープ筋比は0.2%以上とし、立上り部がなければトップフープはダブルとする。

⑥ 柱型部のせん断力の検定は、設計者の所掌範囲とする。

柱型のフープ筋間隔は、骨組解析による柱脚のせん断力により検定してください。

(「付録編の付1」の詳細設計例では、階高、柱の反曲点高比を仮定して、各NC ^ ¬ス型式の最大曲げ耐力から逆算したせん断力によって設計しています。)

柱型のアープ筋は「柱脚検定プログラム」の「赤、青」プログラムで存在応力をもとに設計できます。

3.4.5 柱脚部の耐力の検定

(1) アンカーボルトの定着長さ

(* Lb は回転剛性を計算するときのアンカーボルトの長さを示す。)

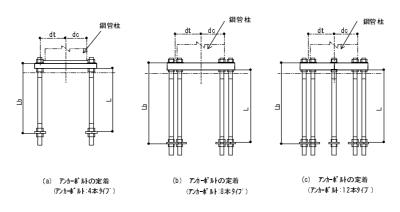
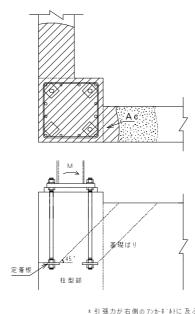


図 3.4.4 アンカーボルトの定着

(2) コンクリートのコーン状破壊耐力による場合

↑ 注意 コーン破壊耐力の検討は設計者様にて行って下さい。

i) コンクリートのコーン状破壊耐力の検討


「各種合成構造設計指針·同解説 (2010)」(日本建築学会)に準拠して、定着板を考慮して以下のように行う。

a) 一次設計時

 $T_a = 0.6 \cdot 0.313 \cdot \sqrt{F_c \cdot A_c}$ (3.4.1)

ここで、Fc: コンクリートの基準強度

Ac: コンクリートのコーン状破壊面の有効水平投影面積(図 3.4.5 参照)

* 引張力が右側の アンカーボルトに及ぶ場合には. ドット部が有効水平投影面積に付加されます.

図3.4.5 コンクリートのコーン状破壊面の有効水平投影面積

b) 終局時

 $T_a = 0.8 \cdot 0.313 \cdot \sqrt{F_c \cdot A_c}$

(3.4.2)

ここで、Fc: コンクリートの基準強度

A。: コンクリートのコーン状破壊面の有効水平投影面積(図 3.4.5 参照)

ii)アンカーボルトに生じる引張力(To)の算定

柱脚に生じている一次設計応力によりアンカーボ かに生じる引張力 T_D は、降伏モーメントとの比率により、(3.4.3)式によって求める。

a) 一次設計時

 $T_{D}=n_{te}\cdot T_{y}\cdot M_{b}/M_{y}(N_{b}\geq 0)$

(3.4.3)

 $n_{te} \cdot (T_N + T_M) (N_b < 0)$

ここで、 $T_N= | N_b | / n_{te}$

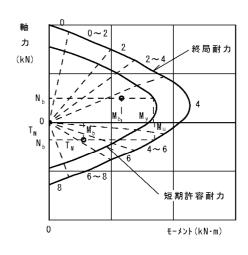
 $T_{\rm M} = (T_{\rm y} - T_{\rm N}) \cdot M_{\rm b} / M_{\rm y}$

nt。 : 引張側アンカーボルトの等価本数

(次図に示した引張本数が変動する領域では、引張等価本数は軸力に応

じて比例計算する。)

T_v: アンカーボルトのネジ部の降伏軸力(表 3.3.2 参照)


M_b=M_L+M_E: 柱脚に生じている モーメント

My : 軸力(Nb=NL+NE)を考慮した降伏モーメント

 M_L 、 N_L : 長期応力 M_E 、 N_E : 地震時応力

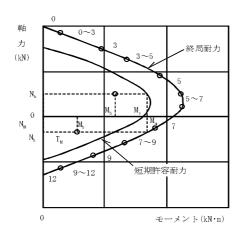


図 3.4.6 (a) 耐力線図

アンカーボルト8本タイプ

図 3.4.6 (b)耐力線図

アンカーボルト 12 本タイプ

図 3.4.6 (c)耐力線図

b) 終局時

$$T_{D}=n_{te} \cdot T_{u} \cdot M_{b}/M_{u}(N_{b} \ge 0)$$

$$n_{te} \cdot (T_{N}+T_{M})(N_{b} < 0)$$
(3. 4. 4)

ここで、 $T_N = |N_b|/n_{te}$

 $T_{\text{M}} = (T_{\text{u}} - T_{\text{N}}) \cdot M_{\text{b}} / M_{\text{u}}$

Tu: アンカーボルトの軸部の降伏軸力(表3.4.1参照)

Мь: メカニズム時(ルート3)あるいは終局時(ルート2)に柱脚に生じているモーメント

Mu:軸力を考慮した終局モーメント

定着板を考慮した抵抗力 T_a (「各種合成構造設計指針・同解説」によるコーン破壊耐力)は、(3.4.1)および(3.4.2)式によって求める。以上より、引張力とコーン破壊耐力が、(3.4.5)式を満足することを確認する。

$$T_a > T_D \tag{3.4.5}$$

T_a < T_D の場合は

3.4.1-ii) コン破壊領域内の鉄筋の許容付着耐力による検定 または

3.4.1-iii) 鉄筋コンクリート柱(礎柱)として設計する

(3) コーン破壊領域にある鉄筋の付着耐力による場合

a) 一次設計時

図3.4.4に示すように、仮想的なコンクリートのコーン状破壊面内に位置する柱型部の立上筋の付着力と基礎梁スタラップ形状の補強筋の引張耐力の協同作用によって、アンカーボルト引張力を定着する。鉄筋の短期許容付着応力度は、「鉄筋コンクリート構造計算規準・同解説(2010)」(日本建築学会)による。ただし、立上り筋の短期付着耐力の上限は、鉄筋の短期引張耐力とする。

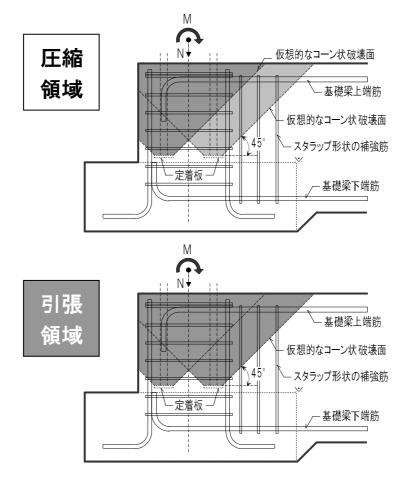


図3.4.7 鉄筋の付着耐力による場合の領域図

b) 終局時

一次設計時と同様に、仮想的なコンクリートのコーン状破壊面内に位置する立上筋の付着力、 基礎梁スタラップ形状の補強筋の引張耐力の協同作用によって、アンカーボルト引張力を定着することができる。鉄筋の終局付着応力度は、「鉄筋コンクリート造建物の靱性保証型耐震設計指針・同解説(1999)」(日本建築学会)による。ただし、立上り筋の終局付着耐力の上限は、鉄筋の終局引張耐力とする。

- 4) 鉄筋コンクリート柱(礎柱)として設計する場合
 - a) 一次設計時

柱型立上り部下面の応力 (M_F, N_F, Q_F) は、(3.4.6)式で求める。

 $M_F = M_b + Q_b \cdot h$

 $N_{\rm F} = N_{\rm b}$ (3.4.6)

 $Q_F = Q_b$ ただし、h: 立上り部高さ

柱型部の短期許容耐力(M_a , N_s)が、骨組の応力解析により求められた柱型部の短期 設計応力(M_F , N_F) より大きくなるように RC 柱型部(礎柱)の設計を行う。 設計は、「鉄筋コンクリート構造計算規準・同解説(2010)」(日本建築学会)による。 せん断力の検討についても、「同上 計算規準・同解説(2010)」による。 鉄筋の定着長さは、図 3.4.1 による。

b) 終局時

柱型部の終局耐力(M_{Fu} N_{Fu})が、骨組応力解析により求められた柱脚部の終局応力 (M_{u} N_{u}) より大きくなるように、RC 柱型部(礎柱)の設計を行う。

設計は、「鉄筋コンケリート造建物の靱性保証型耐震設計指針・同解説(1999)」(日本建築学会)による。

せん断力の検討についても、「同上 設計指針・同解説(1999)」による。 鉄筋の定着長さは、図 3.4.1 による。

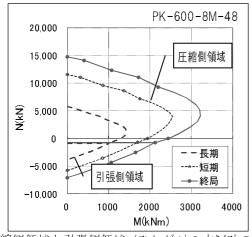
注意 基礎柱型を鉄筋コンクリート柱として設計する場合は、「柱脚検定プログラム」の青プログラムで計算できます。

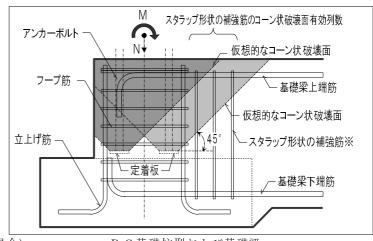
付 録 編

目 次

		頁
付1	⚠ 注意 RC基礎柱型の詳細設計例および	
	柱脚部の耐力曲線図	 36
付2	ベースプレートの型式仮定表	 128
付3	⚠ 注意 RC基礎柱型の最小幅の計算例	 137
付4	柱脚のせん断耐力の計算例	 141
	4.1 柱側面のスラブコンクリートの支圧抵抗による方法	 141
	4.2 アンカーボルトのせん断耐力による方法	 146
付5	RC基礎柱型立上り筋の必要定着長	
	(礎柱を鉄筋コンクリート造柱として計算する場合)	 147
付6	標準品ベースプレートの形状・寸法	 150
付7	CAD関連図面	 158
	7.1 NC ベース柱脚工法設計・施工標準 (1例)	 158
	7.2 RC基礎柱型配筋図(1例)	 159
	7.3 RC基礎柱型および基礎梁の配筋詳細図例(1例)	 160

付1 注意 RC基礎柱型の詳細設計例および柱脚部の耐力曲線図


本章では、NCベースPのRC基礎柱型の配筋例、および柱脚の耐力図を示します。


柱脚の耐力算定時のコンクリート設計基準強度は、Fc=21N/mm²としています。

柱型の設計は、3.4.1 ii) コーン破壊領域にある鉄筋の付着耐力による場合に準拠し、仮想的なコンクリートのコーン状破壊面内に位置する礎柱の立上げ筋と、基礎梁のスタラップ筋の協同作用のみにより、アンカーボルトの定着を確保する方針で標準配筋を求めています。

設計例においては、以下の定義をしています。(表 3.3.3(a-1)~(c-2) 15 頁~24 頁参照)

アンカーホ゛ルト本数タイプ。	圧縮側領域	引張側領域
アンカーホ゛ルト 4 本タイプ゜	2本以下のアンカーボルトが引張状態	2 本超えのアンカーボルトが引張状態
アンカーホ゛ルト8本タイプ゜	4本以下のアンカーボルトが引張状態	4本超えのアンカーボルトが引張状態
アンカーホ゛ルト 12 本タイプ゜	7本以下のアンカーボルトが引張状態	7本超えのアンカーボルトが引張状態

圧縮側領域と引張側領域 (アンカーボルト8 本タイプの場合)

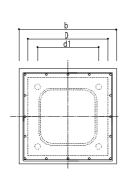
RC基礎柱型および基礎梁

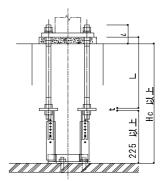
☆注意 ※:コーン状破壊領域内にあるスタラップ形状の補強筋は基礎梁せん断耐力用スタラップ筋とは別途に追加してください。

柱型のフープ筋間隔は接合部扱いとして150mm以下とし、フープ筋比は、0.2%以上としています。また、フープ筋量は、階高、柱の反曲点高比を仮定して、各NCペース型式の最大曲げ耐力から逆算したせん断力によって設計しています。このため、骨組解析による柱脚のせん断力により設計した場合に比べて、過剰になっているケースがあります。適正なフープ筋量を求める場合は、せん断力の検定は設計者様でご検討下さい。

設計例は、立上り部のない場合を示しています。立上り部がある場合は、ベースプレート下から基礎梁 天端までの曲げモーメントの増大を考慮して、「鉄筋コンクリート構造計算規準・同解説(2010)」(日本建築学会)に従ってご検討下さい。

詳細設計例の使い方


次ページ以降に示す各型式の詳細設計例は、アンカーボルトの引張耐力に相応するだけの柱型立上 筋及び梁スタラップ筋の鉄筋量を示していますので、このままお使い頂けます。


同様の手法で柱型のサイズ、配筋サイズを変更する場合は、「NC ベース P 柱脚検定プログラム」を ダウンロードしてご検討下さい。

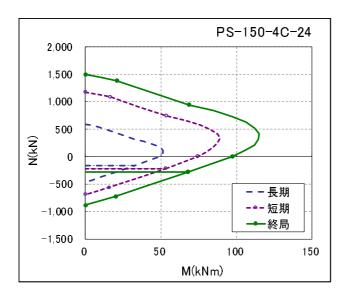
また、存在応力に相応するだけの配筋量に抑えたい場合は、別途、RC規準に従い、柱型サイズ、 配筋量をご検討頂く事も可能です。 こちらも上記検定プログラムでご検討頂けます(青プログラム)。

付 1 RC基礎柱型および基礎梁の詳細設計例

 $\Box -150 \times 150$ アンカーボルト:4本タイプ

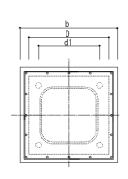
NCベース各部の寸法

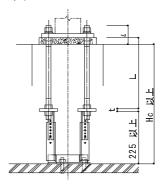
<u> </u>	· 🖂 🗗							
NCベース型式	D	d1	d2	BPL厚	L	t	1*	Нс
NCA -X至式	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
PS-150-4 C-24	276	216	_	28	400	16	132 [121]	591


グラウト厚:50mm *:1は施工時の標準,[]内数値は注入金物無し時

R C柱型											基		
NC^` ⊢ス	2型式 柱径 圧縮側領域				則領域	引張側領域					スタラップ形状の補強筋※		
INC.	b 立上げ筋				フープ 筋	立上げ筋				本数、	コーン破壊面		
		(mm)	中柱	側柱	隅柱	ノーノ 月刀	中柱	側柱	隅柱	ノーノ 月刀	径、ピッチ	有効列数	
PS-150-4	C-24	480	8-D16	8-D16	8-D16	D13@150	8-D16	8-D16	16-D16	D13@150	D13@150	2	

↑ 注意 立上げ筋の端部は、基本的にはフック無しとしています。


- ・柱の類型は、下記の通りとします。
 - ・隅柱: R C 基礎柱型に、基礎梁が直交2方向から取り付く場合
 - ・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合
- 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・N Cベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲げ耐力を採用する場合には引張側領域の値を採用してください。
- ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は)内に示す寸法とします。
- ・鉄筋の材料規格は、D13, D16はSD295、D19, D22, D25はSD345、D29はSD390としています。 ・フープ 筋およびスタラップ 筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします。
 - ・第一スタラップ筋の位置: R C柱型の端部位置
 - ・ スタラップ 筋の基礎梁側端部の位置:基礎梁の仮想的なコーン状破壊面位置(定着板より45゚の範囲)
- ・ ▲ 警告 柱の反曲点高さは、柱径550mm以下は1,500mm、柱径600mm以上は1,800mm、角形鋼管用の柱径900mm以上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合には、フープ筋量が不足する場合がありますので、別途ご検討下さい。
 ・ ▲ 警告 基礎梁としての必要な大きさ、主筋量およびスタラップ筋量は、別途ご検討下さい。
 ・ ▲ 警告 R C柱型に立上り部がある場合は、別途R C 規準に従って設計してください。


PS-150-4 シリーズ

付 1 RC基礎柱型および基礎梁の詳細設計例

 $\Box -175 \times 175$ アンカーボルト:4本タイプ

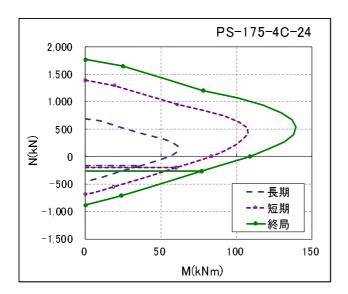
1) NCベース各部の寸法

1/110 /	17 110 7 八日即の 1万													
NCベース型式	D	d1	d2	BPL厚	L	t	1*	Нс						
NUNTEXEX	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)						
PS-175-4C-24	300	240	_	28	400	16	132 [121]	591						

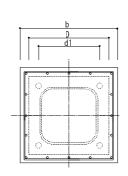
グラウト厚:50mm *:1は施工時の標準,[]内数値は注入金物無し時

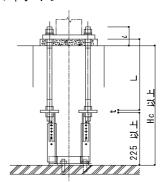
	L T 13 75 C													
					R C柱型					基				
NCベース型式	柱径		圧縮	則領域	引張側領域				スタラップ。形状	この補強筋※				
110八 7至八	b		立上げ僚	i	フープ 筋		立上げ筋	j	フープ筋	本数、	コーン破壊面			
	(mm)	中柱	側柱	隅柱	/ / 用刀	中柱	側柱	隅柱	/ / 用刀	径、ピッチ	有効列数			
PS-175-4C-24	500	8-D16	8-D16	8-D16	D13@150	8-D16	8-D16	16-D16	D13@150	D13@150	2			

↑ 注意 立上げ筋の端部は、基本的にはフック無しとしています。


- ・柱の類型は、下記の通りとします。
 - ・隅柱:RC基礎柱型に、基礎梁が直交2方向から取り付く場合・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合

 - ・中柱: R C 基礎柱型に、基礎梁が 4 方向から取り付く場合


- 独立柱等、上記の類型以外の場合は、別途ご検討下さい。 ・NCベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側
- 領域の値を採用し、下側領域の曲げ耐力を採用する場合には引張側領域の値を採用してください。 ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は () 内に示すす法とします。
 ・鉄筋の材料規格は、D13, D16はSD295、D19, D22, D25はSD345、D29はSD390としています。
 ・フープ 筋およびスクラップ 筋の頭数字は、複数配筋を示しています。


- ・鉄筋の配置は下記の通りとします。
 - ・第一スタラップ筋の位置:RC柱型の端部位置
 - ・ スタラップ筋の基礎梁側端部の位置:基礎梁の仮想的なコーン状破壊面位置(定着板より45°の範囲)
- ・ <u>小</u> 警告 柱の反曲点高さは、柱径550mm以下は1,500mm、柱径600mm以上は1,800mm、角形鋼管用の 社径900mm以上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合には、フープ筋量が不足する場合がありますので、別途ご検討下さい。
 ・ ▲ 警告 基礎梁としての必要な大きさ、主筋量およびスタラップ筋量は、別途ご検討下さい。
 ・ ▲ 警告 R C柱型に立上り部がある場合は、別途R C 規準に従って設計してください。

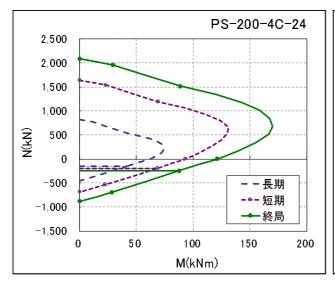
PS-175-4 シリーズ

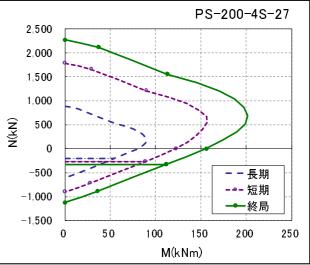
 \Box -200 × 200 アンカーボルト: 4 本タイプ

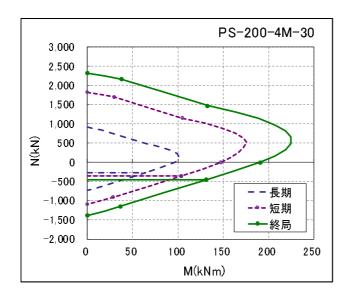
1) NCベース各部の寸法

NC^゙ース型式		D	d1	d2	BPL厚	L	t	1	*	Нс
	110 八里四	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(n	nm)	(mm)
D	PS-200-4C-24	326	266		28	400	16	132	[121]	591
1	PS-200-4S-27	340	270	_	32	405	16	139	[128]	596
П	PS-200-4M-30	344	274	_	36	450	16	148	[137]	641

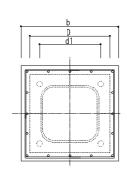
グラウト厚:50mm *:1は施工時の標準,「]内数値は注入金物無し時

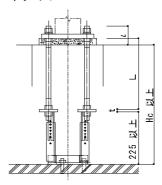

					R C柱型					基礎梁		
NC^ `-ス型式	柱径		圧縮低	則領域			引張作	則領域		スタラップ。形状	代の補強筋※	
NO. NELL	b		立上げ筋	•	フープ 筋		立上げ筋	1	フープ 筋		コーン破壊面	
	(mm)	中柱	側柱	隅柱	/ / 用刀	中柱	側柱	隅柱	/ / 用刀	径、ピッチ	有効列数	
PS-200-4C-24	530	8-D16	8-D16	8-D16	D13@150	8-D16	8-D16	16-D16	D13@150	D13@150	2	
PS-200-4S-27	550	8-D19	8-D19	8-D19	D13@150	8-D19	8-D19	12-D19	D13@150	□ D13@125	2	
PS-200-4M-30	550	8-D22	8-D22 8-D22 8-D22			8-D22	12-D22	12-D22	D13@150	D13@150	2	


↑ 注意 立上げ筋の端部は、基本的にはフック無しとしています。


- ・柱の類型は、下記の通りとします。
 ・隅柱:RC基礎柱型に、基礎梁が直交2方向から取り付く場合・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合
- 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・N Cベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲が耐力を採用する場合には引張側領域の値を採用してください。
 ・柱径 b(mm)は、圧縮側対法を示します。基本的には引張側寸法も同一としますが、異なる場合は
-)内に示す寸法とします。
- ・鉄筋の材料規格は、D13, D16はSD295、D19, D22, D25はSD345、D29はSD390としています。
 ・フープ筋およびスタラップ筋の頭数字は、複数配筋を示しています。
 ・鉄筋の配置は下記の通りとします。
- - ・第一スタラップ筋の位置: R C柱型の端部位置
 - ・スタラップ筋の基礎梁側端部の位置:基礎梁の仮想的なコン状破壊面位置(定着板より45゚の範囲)

- ・ ▲ 警告 R C柱型に立上り部がある場合は、別途R C 規準に従って設計してください。

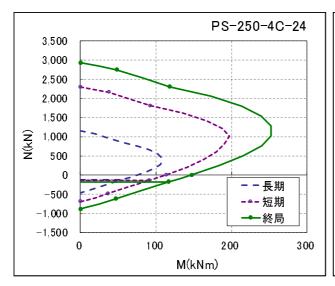

PS-200-4 シリーズ

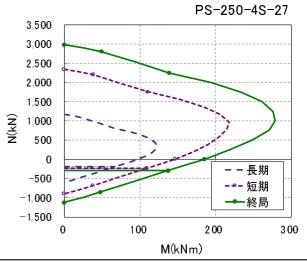


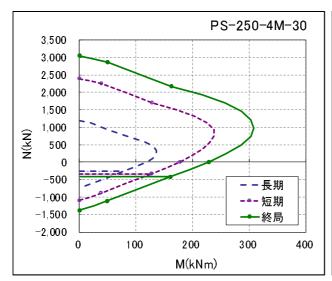
 $\square -250 \times 250$ アンカーボルト:4本タイプ

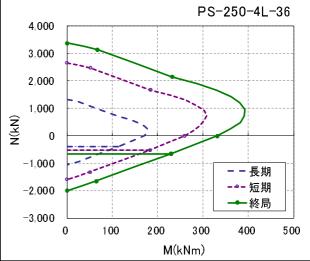
1) N C ベース各部の寸法

NCベース型式	D	d1	d2	BPL厚	L	t		1*	Нс				
NOV X主人	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)				
PS-250-4C-24	386	316		28	400	16	132	[121]	591				
PS-250-4S-27	390	320	_	32	405	16	139	[128]	596				
PS-250-4M-30	394	324		36	450	16	148	[137]	641				
PS-250-4L-36	415	330	_	40	540	19	160	[149]	734				
				-									

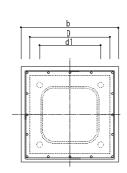

グラウト厚:50mm *:1は施工時の標準, []内数値は注入金物無し時

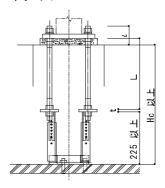

		, <u>— 17C/1</u> C/1	· H									
					R C柱型					基礎梁		
NC^ `-ス型式	柱径		圧縮	則領域	引張側領域				スタラップ形状の補強			
110、 /主八	b				フープ 筋	立上げ筋 フェフェ 気		フープ 筋		コーン破壊面		
	(mm)	中柱	側柱	隅柱	/ / 用刀	中柱	側柱	隅柱	/ / HJJ	径、ピッチ	有効列数	
PS-250-4C-24	580	8-D16	8-D16	8-D16	D13@150	8-D16	8-D16	16-D16	D13@150	D13@150	2	
PS-250-4S-27	600	8-D19	8-D19	8-D19	D13@150	8-D19	8-D19	12 - D19	D13@150	□ D13@125	2	
PS-250-4M-30	600	8-D22	8-D22	8-D22	D13@150	8-D22	8-D22	12-D22	D13@150	□ D13@150	2	
PS-250-4L-36	650	8-D25	8-D25	8-D25	D13@150	8-D25	12-D25	12-D25	D13@150	D13@125	3	


↑ 注意 立上げ筋の端部は、基本的にはフック無しとしています。


- ・柱の類型は、下記の通りとします。
 - ・隅柱:RC基礎柱型に、基礎梁が直交2方向から取り付く場合・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合
- 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・N Cベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲が耐力を採用する場合には引張側領域の値を採用してください。
 ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は()内に示す寸法とします。
- ・鉄筋の材料規格は、D13, D16はSD295、D19, D22, D25はSD345、D29はSD390としています。
- ・フープ筋およびスタラップ筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします。
 - 第一スタラップ筋の位置:R C柱型の端部位置
 - ・ スタラップ 筋の基礎梁側端部の位置: 基礎梁の仮想的なコーン状破壊面位置(定着板より45゚の範囲)
- · <u>小</u> 警告 柱の反曲点高さは、柱径550mm以下は1,500mm、柱径600mm以上は1,800mm、角形鋼管用の 柱径900mm以上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合には、7-7 筋量が不足する場合がありますので、別途ご検討下さい。 基礎梁としての必要な大きさ、主筋量およびスタラッフ 筋量は、別途ご検討下さい。 R C柱型に立上り部がある場合は、別途R C 規準に従って設計してください。
- ▲ 警告

PS-250-4 シリーズ

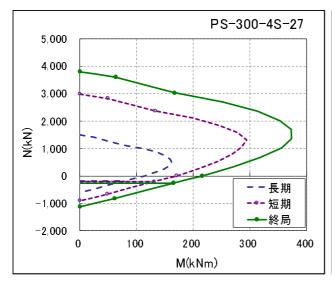


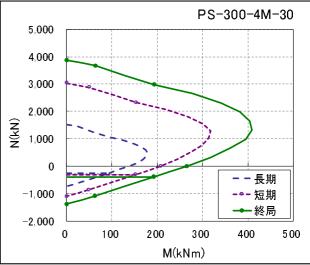


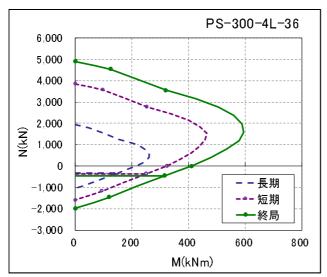
 $\Box -300 \times 300$ アンカーボルト:4本タイプ

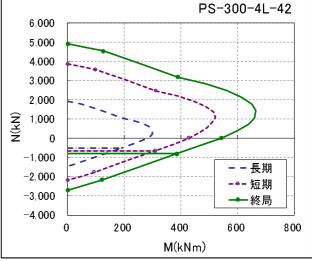
1) N C ベース各部の寸法

17 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												
NCベース型式	D	d1	d2	BPL厚	L	t		1*	Нс			
NOV X主人	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)			
PS-300-4S-27	440	370	-	32	405	16	139	[128]	596			
PS-300-4M-30	444	374	_	36	450	16	148	[137]	641			
PS-300-4L-36	500	390	_	40	540	19	160	[149]	734			
PS-300-4L-42	500	390	_	45	630	22	176	[165]	827			

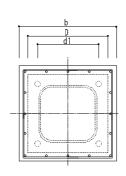

1^{*} うか厚:50mm *:1は施工時の標準, []内数値は注入金物無し時

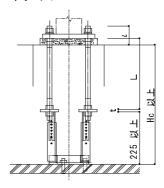

	27代0至於任主8880至於朱矽時間於日初													
					R C柱型					基礎梁				
NCベース型式	柱径		圧縮	則領域		引張側領域				スタラップ。形状	₹の補強筋※			
100、 7至八	b	立上げ筋		フープ 筋	立上げ筋			フープ 筋	本数、	コーン破壊面				
	(mm)	中柱	側柱	隅柱	/ / 用刀	中柱	側柱	隅柱	/ / 用刀	径、ピッチ	有効列数			
PS-300-4S-27	650	8-D19	8-D19	8-D19	D13@150	8-D19	8-D19	12 - D19	D13@150	□ D13@125	2			
PS-300-4M-30	650	8-D22	8-D22	8-D22	D13@150	8-D22	8-D22	12-D22	D13@150	□ D13@100	2			
PS-300-4L-36	700	8-D25	8-D25	8-D25	D13@150	8-D25	8-D25	12-D25	D13@150	■ D13@200	2			
PS-300-4L-42	700	8-D25	12-D25	12-D25	D13@150	12-D25	16-D25	16-D25	D13@100	D13@300	2			


↑ 注意 立上げ筋の端部は、基本的にはフック無しとしています。


- ・柱の類型は、下記の通りとします。
 - ・隅柱:RC基礎柱型に、基礎梁が直交2方向から取り付く場合・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合
- 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・N Cベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲が耐力を採用する場合には引張側領域の値を採用してください。
 ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は()内に示す寸法とします。
- ・鉄筋の材料規格は、D13, D16はSD295、D19, D22, D25はSD345、D29はSD390としています。
- ・フープ筋およびスタラップ筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします。
 - 第一スタラップ筋の位置:R C柱型の端部位置
 - ・ スタラップ 筋の基礎梁側端部の位置: 基礎梁の仮想的なコーン状破壊面位置(定着板より45゚の範囲)
- · <u>小</u> 警告 柱の反曲点高さは、柱径550mm以下は1,500mm、柱径600mm以上は1,800mm、角形鋼管用の 柱径900mm以上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合には、7-7 筋量が不足する場合がありますので、別途ご検討下さい。 基礎梁としての必要な大きさ、主筋量およびスタラップ 筋量は、別途ご検討下さい。 R C柱型に立上り部がある場合は、別途R C 規準に従って設計してください。
- ▲ 警告

PS-300-4 シリーズ

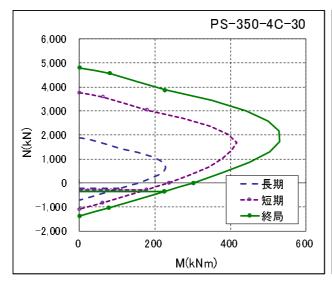


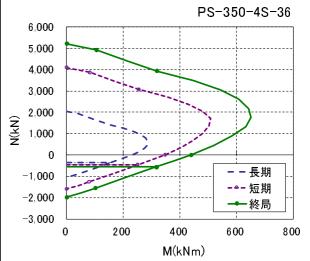


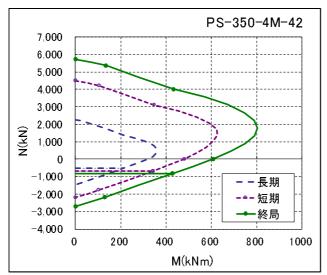
 $\Box -350 \times 350$ アンカーボルト:4本タイプ

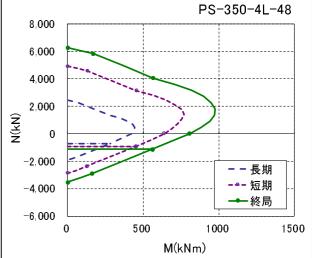
1) NCベース各部の寸法

NCベース型式	D (mm)	d1 (mm)	d2 (mm)	BPL厚 (mm)	L (mm)	t (mm)	(l* mm)	Hc (mm)
PS-350-4C-30	494	424	_	36	450	16	148	[137]	641
PS-350-4S-36	515	430	_	40	540	19	160	[149]	734
PS-350-4M-42	540	440	_	45	630	22	176	[165]	827
PS-350-4L-48	565	450	1	55	720	25	193	[182]	920

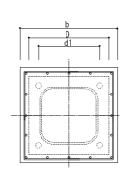

1^{*} うか厚:50mm *:1は施工時の標準, []内数値は注入金物無し時

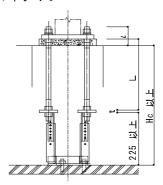

					R C柱型					基	
NCベース型式	柱径		圧縮	則領域			引張	則領域		スタラップ形状	この補強筋※
NC. NELL	b		立上げ筋		フープ 筋		立上げ筋	· I	フープ 筋	本数、	コーン破壊面
	(mm)	中柱	側柱	隅柱	/ / 用刀	中柱	側柱	隅柱	/ / HJJ	径、ピッチ	有効列数
PS-350-4C-30	700	8-D22	8-D22	8-D22	D13@150	8-D22	8-D22	12-D22	D13@150	□ D13@150	2
PS-350-4S-36	750	8-D25	8-D25	8-D25	D13@150	8-D25	8-D25	12-D25	D13@150	□ D13@125	3
PS-350-4M-42	750	8-D25	12-D25	12-D25	D13@150	12-D25	16-D25	16-D25	D13@100	D13@300	2
PS-350-4L-48	750	8-D25	12-D25	16-D25	D13@150	16-D25	16-D25	20-D25	D13@100	D13@200	3


↑ 注意 立上げ筋の端部は、基本的にはフック無しとしています。


- ・柱の類型は、下記の通りとします。
 - ・隅柱:RC基礎柱型に、基礎梁が直交2方向から取り付く場合・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合
- 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・N Cベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲が耐力を採用する場合には引張側領域の値を採用してください。
 ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は()内に示す寸法とします。
- ・鉄筋の材料規格は、D13, D16はSD295、D19, D22, D25はSD345、D29はSD390としています。
- ・フープ筋およびスタラップ筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします。
 - 第一スタラップ筋の位置:R C柱型の端部位置
 - ・ スタラップ 筋の基礎梁側端部の位置: 基礎梁の仮想的なコーン状破壊面位置(定着板より45゚の範囲)
- 柱径900mm以上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合には、7-7 筋量が不足する場合がありますので、別途ご検討下さい。 基礎梁としての必要な大きさ、主筋量およびスタラッフ 筋量は、別途ご検討下さい。 R C柱型に立上り部がある場合は、別途R C 規準に従って設計してください。
- ▲ 警告

PS-350-4 シリーズ





 $\Box -400 \times 400$ アンカーボルト: 4 本タイプ

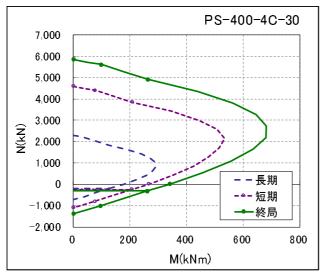
1) N C ベース各部の寸法

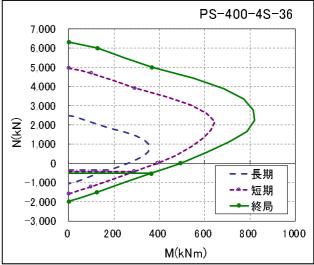
,	· 🗆 🗗								
NCベース型式	D	d1	d2	BPL厚	L	t		1*	Нс
NUN -X至氏	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
PS-400-4C-30	546	476		36	450	16	148	[137]	641
PS-400-4S-36	567	482	_	45	540	19	165	[154]	734
PS-400-4M-42	592	492		50	630	22	181	[170]	827
PS-400-4L-48	617	502	1	55	720	25	193	[182]	920
PS-400-4X-56	649	514	_	65	840	28	213	[202]	1043

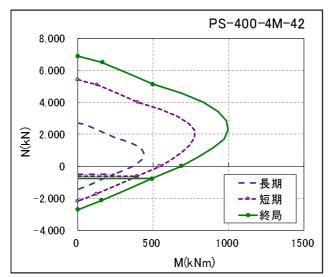
グラウト厚:50mm *:1は施工時の標準,[]内数値は注入金物無し時

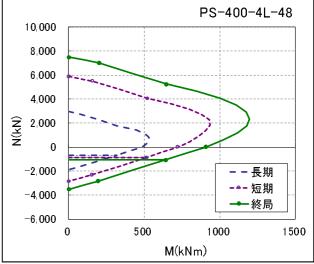
2) RC基礎柱型および基礎梁の詳細設計例

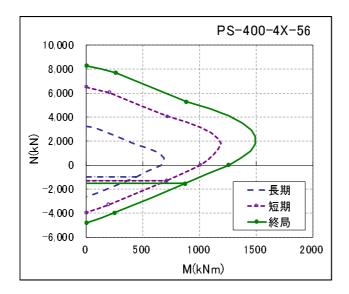
					R C柱型					基	礎梁
NCベース型式	柱径		圧縮	則領域			引張	則領域		スタラップ。形状	代の補強筋※
NCA -X至八	b		立上げ筋		フープ 筋		立上げ筋	i	フープ 筋		コーン破壊面
	(mm)	中柱	側柱	隅柱	ノーノ 月刀	中柱	側柱	隅柱	ノーノ 月刀	径、ピッチ	有効列数
PS-400-4C-30	800	8-D22	8-D22	8-D22	D13@150	8-D22	8-D22	12-D22	D13@150	□ D13@150	2
PS-400-4S-36	800	8-D25	8-D25	8-D25	D13@150	8-D25	8-D25	12-D25	D13@150	□ D13@125	3
PS-400-4M-42	800	8-D25	12-D25	12-D25	D13@150	12-D25	12-D25	16-D25	D13@100	D13@150	3
PS-400-4L-48	800	12-D25	12-D25	16-D25	D13@145	16-D25	20-D25	20-D25	D13@100	D13@300	2
PS-400-4X-56	850	12-D25	12-D25	20-D25	D13@100	20-D25	24-D25	28-D25	D13@100	D13@150	4

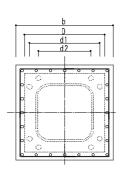

立上げ筋の端部は、基本的にはフック無しとしています。 ▲ 注意

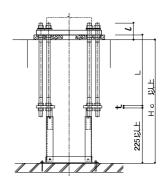

- ・柱の類型は、下記の通りとします。
 - ・隅柱:RC基礎柱型に、基礎梁が直交2方向から取り付く場合・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合


 - ・中柱: R C 基礎柱型に、基礎梁が 4 方向から取り付く場合
- 独立柱等、上記の類型以外の場合は、別途で検討下さい。 ・NCベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側 領域の値を採用し、下側領域の曲げ耐力を採用する場合には引張側領域の値を採用してください。 ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は
-)内に示す寸法とします。
- ・鉄筋の材料規格は、D13, D16はSD295、D19, D22, D25はSD345、D29はSD390としています。 ・フープ 筋およびスタラップ 筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします。
 - ・第一スタラップ筋の位置:RC柱型の端部位置
- ・ スタラップ 筋の基礎梁側端部の位置:基礎梁の仮想的なコーン状破壊面位置(定着板より45°の範囲)


 <u>↑</u> 警告 柱の反曲点高さは、柱径550mm以下は1,500mm、柱径600mm以上は1,800mm、角形鋼管用の


PS-400-4 シリーズ





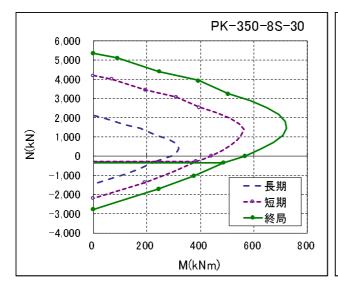
 $\square -350 \times 350$ アンカーボルト:8本タイプ

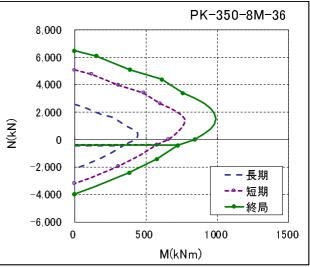
N C ベース各部の寸法

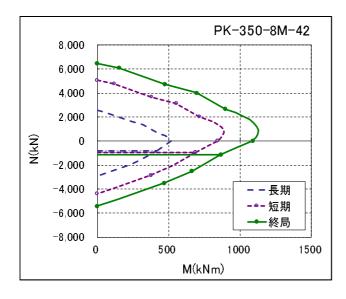
	NCベース型式	D (mm)	d1 (mm)	d2 (mm)	BPL厚 (mm)	L (mm)	t (mm)		l* mm)	Hc (mm)
ľ	PK-350-8S-30	522	452	318	40	600	16	152	[141]	791
	PK-350-8M-36	574	474	296	45	720	19	165	[154]	914
	PK-350-8M-42	574	474	296	50	840	22	181	[170]	1037

グラウト厚:50mm *:1は施工時の標準,[]内数値は注入金物無し時

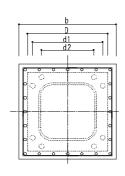
2) RC基礎柱型および基礎梁の詳細設計例

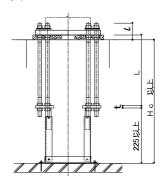

					RC柱型					基	
NC^ ゚ース型式	柱径	柱径					スタラップ形状	この補強筋※			
NON一A至其	b	-	立上げ筋	•	フープ 筋		立上げ筋	· 	フープ 筋	本数、	コーン破壊面
	(mm)	中柱	側柱	隅柱	/ / 周川	中柱	側柱	隅柱	/ / 月刀	径、ピッチ	有効列数
PK-350-8S-30	750	8-D22	8-D22	12-D22	D13@150	12-D22	16-D22	20-D22	D13@150	D13@100	4
PK-350-8M-36	800	8-D25	8-D25	12-D25	D13@150	16-D25	16-D25	24-D25	D13@110	D13@100	5
PK-350-8M-42	800	8-D25	8-D25	16-D25	D13@150	16-D25	20-D25	32-D25	D13@100	■ D13@150	4


立上げ筋の端部は、基本的にはフック無しとしています。


- ・柱の類型は、下記の通りとします。
 - ・隅柱:RC基礎柱型に、基礎梁が直交2方向から取り付く場合・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合

- ・鉄筋の材料規格は、D13,D16はSD295、D19,D22,D25はSD345、D29はSD390としています。
- ・フープ筋およびスタラップ筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします
 - ・第一スタラップ筋の位置:RC柱型の端部位置
 - ・ スタラップ 筋の基礎梁側端部の位置: 基礎梁の仮想的なコーン状破壊面位置(定着板より45°の範囲)


PK-350-8 シリーズ



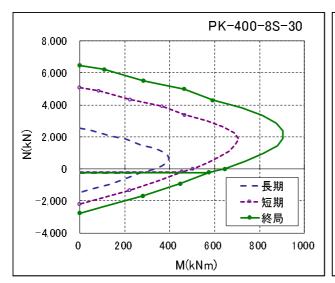
 $\Box -400 \times 400$ アンカーボルト:8本タイプ

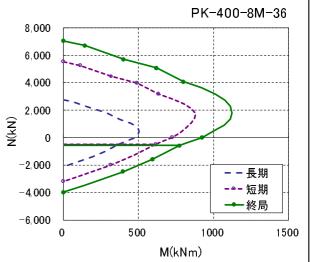
1) N C ベース各部の寸法

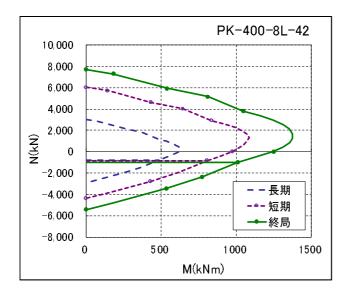
1/110 /	, D H) 6) 1	/4							
NCベース型式	D	d1	d2	BPL厚	L	t	1,	*	Нс
10、 7主以	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m	m)	(mm)
PK-400-8S-30	574	504	370	40	600	16	152	[141]	791
PK-400-8M-36	599	514	360	50	720	19	170	[159]	914
PK-400-8L-42	626	526	348	55	840	22	186	[175]	1037

グラウト厚:50mm *:1は施工時の標準,[]内数値は注入金物無し時

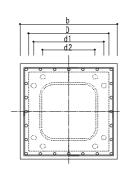
2) RC基礎柱型および基礎梁の詳細設計例

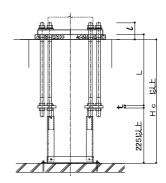

	土ののい	生に木り		ו וייו								
					RC柱型					基礎梁		
NCベース型式	柱径		圧縮	則領域			引張	則領域		スタラップ形状	べの補強筋※	
NO. NELL	b		立上げ筋	1	フープ 筋		立上げ筋	i	フープ 筋		コーン破壊面	
	(mm)	中柱	側柱	隅柱	/ / 用刀	中柱	側柱	隅柱	/ / 月刀	径、ピッチ	有効列数	
PK-400-8S-30	800	8-D22	8-D22	12-D22	D13@150	12-D22	16-D22	20-D22	D13@150	D13@100	4	
PK-400-8M-36	800	8-D25	12-D25	16-D25	D13@150	16-D25	16-D25	24-D25	D13@100	D13@150	4	
PK-400-8L-42	850	8-D25	12-D25	16-D25	D13@125	16-D25	20-D25	32-D25	D13@115	■ D13@150	4	


立上げ筋の端部は、基本的にはフック無しとしています。


- ・柱の類型は、下記の通りとします。
 - ・隅柱:RC基礎柱型に、基礎梁が直交2方向から取り付く場合・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合

- ・鉄筋の材料規格は、D13,D16はSD295、D19,D22,D25はSD345、D29はSD390としています。
- ・プープ筋およびスタラップ筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします。
 ・第一スタラップ筋の位置:RC柱型の端部位置
 ・スタラップ筋の基礎梁側端部の位置:基礎梁の仮想的なコン状破壊面位置(定着板より45°の範囲)


PK-400-8 シリーズ

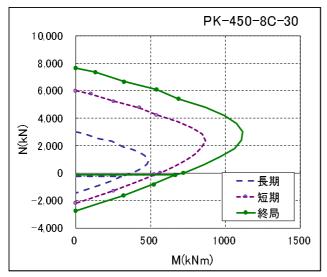


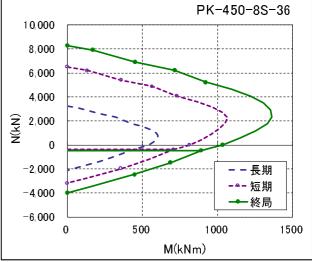
 $\Box -450 \times 450$ アンカーボルト:8本タイプ

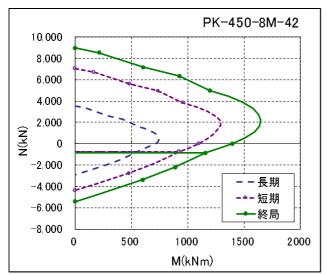
1) NCベース各部の寸法

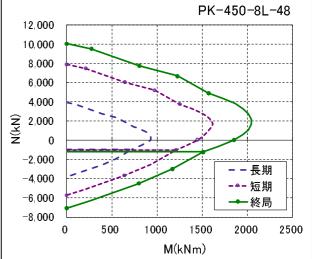
NCベース型式	D (mm)	d1 (mm)	d2 (mm)	BPL厚 (mm)	L (mm)	t (mm)	,	l* mm)	Hc (mm)
PK-450-8C-30	624	554	420	40	600	16	152	[141]	791
PK-450-8S-36	649	564	410	50	720	19	170	[159]	914
PK-450-8M-42	676	576	398	55	840	22	186	[175]	1037
PK-450-8L-48	715	600	386	60	960	25	198	[187]	1160

グラウト厚:50mm *:1は施工時の標準,[]内数値は注入金物無し時

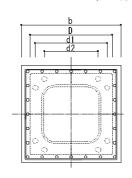

			A								
	•		•		RC柱型		•			基	濋梁
NCベース型式	柱径		圧縮	則領域			引張	則領域		スタラップ形状の補強筋%	
NOV NELL	b		立上げ筋	I	フープ 筋		立上げ僚	1	フープ 筋	本数、	コーン破壊面
	(mm)	中柱	側柱	隅柱	/ / 用刀	中柱	側柱	隅柱	/ / 用刀	径、ピッチ	有効列数
PK-450-8C-30	850	8-D22	8-D22	12-D22	D13@149	8-D22	12-D22	20-D22	D13@149	■ D13@150	3
PK-450-8S-36	850	8-D25	12-D25	16-D25	D13@130	16-D25	16-D25	24-D25	D13@110	D13@150	4
PK-450-8M-42	900	8-D25	12-D25	20-D25	D13@105	20-D25	24-D25	32-D25	D13@100	D13@100	6
PK-450-8L-48	950	16-D25	16-D25	24-D25	D16@120	32-D25	32-D25	40-D25	D16@105	D13@150	5

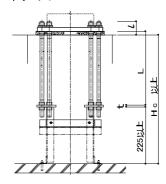

↑ 注意 立上げ筋の端部は、基本的にはフック無しとしています。


- ・柱の類型は、下記の通りとします
 - ・隅柱: R C 基礎柱型に、基礎梁が直交2方向から取り付く場合


 - ・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合
- 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・N Cベース耐力線図(次頁)において、横線の上側領域の曲が耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲が耐力を採用する場合には引張側領域の値を採用してください。
- ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は)内に示す寸法とします。
- ・鉄筋の材料規格は、D13,D16はSD295、D19,D22,D25はSD345、D29はSD390としています。
- ・プープ筋およびスタラップ筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします。
 - ・第一スタラップ筋の位置: R C 柱型の端部位置
- ・ スタラップ 筋の基礎梁側端部の位置:基礎梁の仮想的なコーン状破壊面位置(定着板より45°の範囲)・ <u>小</u> 警告 柱の反曲点高さは、柱径550mm以下は1,500mm、柱径600mm以上は1,800mm、角形鋼管用の 柱径900mm以上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合には、フープ筋量が不足する場合がありますので、別途ご検討下さい。 基礎梁としての必要な大きさ、主筋量およびスタラップ筋量は、別途ご検討下さい。 RC柱型に立上り部がある場合は、別途RC規準に従って設計してください。

PK-450-8 シリーズ





 $\Box -500 \times 500$ アンカーボルト:8本タイプ

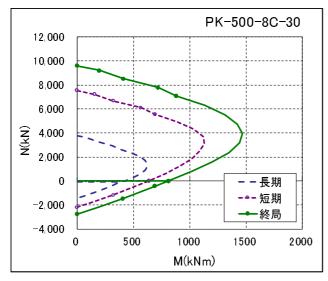
1) N C ベース各部の寸法

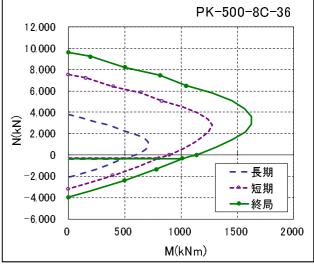
<u> 17 NO + 7</u>		/						
NC^*-ス型式	D	d1	d2	BPL厚	L	t	1*	Нс
NON一X至人	(mm)	(mm)						
PK-500-8C-30	699	614	460	40	600	16	152 [141]	791
PK-500-8C-36	699	614	460	50	720	19	170 [159]	914
PK-500-8S-42	726	626	448	55	840	22	186 [175]	1037
PK-500-8M-48	765	650	436	60	960	25	198 [187]	1160
PK-500-8X-56	800	663	424	70	1120	28	218 [207]	1323

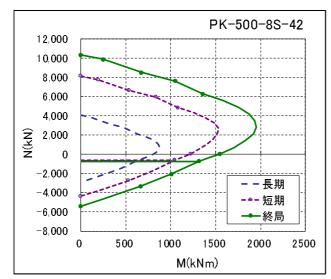
グラウト厚:50mm *:1は施工時の標準,「]内数値は注入金物無し時

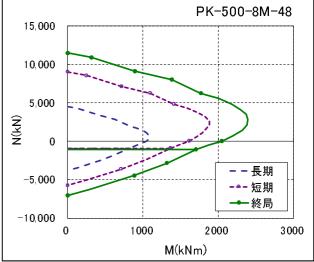
2) RC基礎は型および基礎梁の詳細設計例

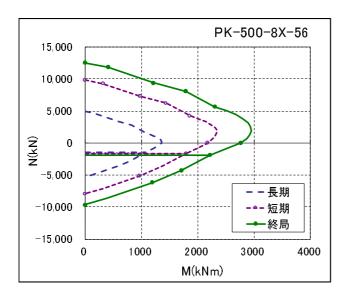
2/八〇圣诞任	エいひひ	全ルイツ		1 173							
					RC柱型					基征	
NCベース型式	柱径	圣 圧縮側領域 引張側領域					スタラップ形状	この補強筋※			
NOV NELL	b		立上げ筋	1	フープ 筋		立上げ筋	· 	フープ 筋	本数、	コーン破壊面
	(mm)	中柱	側柱	隅柱	/ / 用刀	中柱	側柱	隅柱	/ / 用刀	径、ピッチ	有効列数
PK-500-8C-30	900	12-D22	16-D22	16-D22	D13@141	16-D22	20-D22	20-D22	D13@141	D13@300	2
PK-500-8C-36	900	8-D25	12-D25	16-D25	D13@105	16-D25	16-D25	24-D25	D13@105	D13@100	5
PK-500-8S-42	950	8-D25	12-D25	20-D25	D13@85	20-D25	24-D25	32-D25	D13@110	D13@100	6
PK-500-8M-48	1000	20-D25	20-D25	24-D25	D16@105	32-D25	36-D25	40-D25	D16@100	D13@300	3
PK-500-8X-56	1050	20-D25	20-D25	32-D25	D16@75	40-D25	44-D25	52-D25	D16@90	D13@125	7

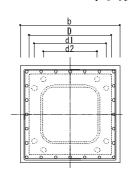

立上げ筋の端部は、基本的にはフック無しとしています。 注意

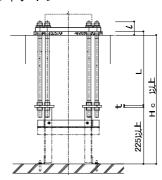

- # 名
 ・柱の類型は、下記の通りとします。
 ・隅柱:RC基礎柱型に、基礎梁が直交2方向から取り付く場合
 ・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合
 ・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合


- 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・N Cベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲が耐力を採用する場合には引張側領域の値を採用してください。
 ・柱径 b(mm) は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は
-)内に示す寸法とします。
- ・鉄筋の材料規格は、D13,D16はSD295、D19,D22,D25はSD345、D29はSD390としています。
 ・フープ 筋およびスタラップ 筋の頭数字は、複数配筋を示しています。


- ・鉄筋の配置は下記の通りとします。 ・第一スタラップ筋の位置:RC柱型の端部位置
 - ・スタラップ筋の基礎梁側端部の位置:基礎梁の仮想的なコーン状破壊面位置(定着板より45゚の範囲)
- ・ <u>小</u> 警告 柱の反曲点高さは、柱径550mm以下は1,500mm、柱径600mm以上は1,800mm、角形鋼管用の柱径900mm以上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合には、フープ筋量が不足する場合がありますので、別途ご検討下さい。
 ・ <u>小</u> 警告 基礎梁としての必要な大きさ、主筋量およびスタラップ筋量は、別途ご検討下さい。
 ・ <u>小</u> 警告 R C柱型に立上り部がある場合は、別途R C 規準に従って設計してください。


PK-500-8 シリーズ





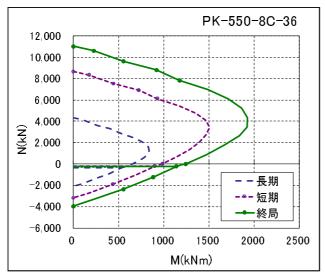
 \Box -550 ×550 アンカーボルト:8本タイプ

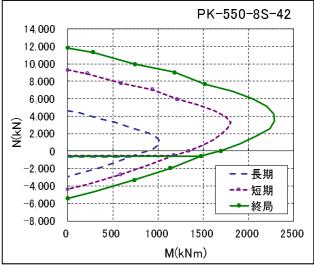
1) NCベース各部の寸法

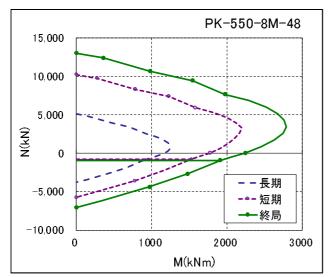
	H Hr sy	, —							
NC^ `-z型式	D	d1	d2	BPL厚	L	t]	1*	Нс
NUNTAELL	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
PK-550-8C-36	749	664	510	50	720	19	170	[159]	914
PK-550-8S-42	776	676	498	55	840	22	186	[175]	1037
PK-550-8M-48	815	700	486	60	960	25	198	[187]	1160
PK-550-8X-56	850	713	474	70	1120	28	218	[207]	1323
PK-550-8WX-64	875	723	464	75	1280	32	235	[224]	1487
-									

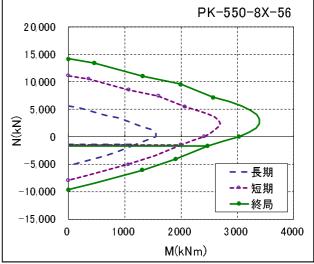
グラウト厚:50mm *:1は施工時の標準,[]内数値は注入金物無し時

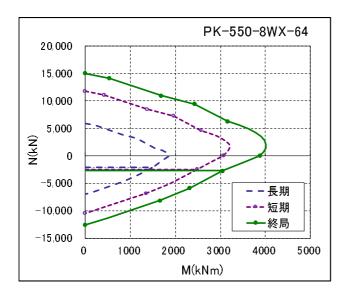
2) RC基礎柱型および基礎梁の詳細設計例

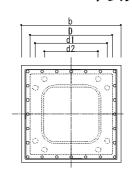

		I/C/I/ */			R C柱型						
				基礎梁							
NCベース型式	柱径	注径 圧縮側領域				引張側領域					さの補強筋※
NOV NELL	b	立上げ筋			フープ 筋		立上げ筋	·	フープ 筋	本数、	コーン破壊面
	(mm)	中柱	側柱	隅柱	/ / 用刀	中柱	側柱	隅柱	7 7 月刀	径、ピッチ	有効列数
PK-550-8C-36	950	12-D25	12-D25	16-D25	D13@90	16-D25	20-D25	24-D25	D13@105	D13@200	3
PK-550-8S-42	1000	12-D25	12-D25	20-D25	D13@110	20-D25	24-D25	32-D25	D13@105	D13@125	5
PK-550-8M-48	1050	20-D25	20-D25	28-D25	D16@90	32-D25	36-D25	40-D25	D16@105	D13@300	3
PK-550-8X-56	1100	24-D25	24-D25	32-D25	⊞ D16@105	44-D25	48-D25	52-D25	D16@85	■ D13@250	4
PK-550-8WX-64	1200	16-D29	20-D29	28-D29	⊞ D16@95	36-D29	40-D29	48-D29	D16@70	D13@100	10

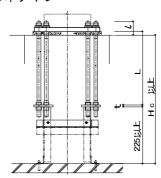

△ 注意 立上げ筋の端部は、基本的にはフック無しとしています。


- ・柱の類型は、下記の通りとします。
 - ・隅柱: R C 基礎柱型に、基礎梁が直交2方向から取り付く場合


 - ・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合
- 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・N Cベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲が耐力を採用する場合には引張側領域の値を採用してください。
 ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は
-)内に示す寸法とします
- ・鉄筋の材料規格は、D13,D16はSD295、D19,D22,D25はSD345、D29はSD390としています。
 ・フープ 筋およびスクラップ 筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします
 - ・ 第一スタラップ 筋の位置: R C 柱型の端部位置
 - ・ スタラップ 筋の基礎梁側端部の位置: 基礎梁の仮想的なコン状破壊面位置(定着板より45°の範囲)
- ・ ▲ 警告 柱の反曲点高さは、柱径550mm以下は1,500mm、柱径600mm以上は1,800mm、角形鋼管用の柱径900mm以上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合には、フープ筋量が不足する場合がありますので、別途ご検討下さい。
 ・ ▲ 警告 基礎梁としての必要な大きさ、主筋量およびスタラップ筋量は、別途ご検討下さい。
 ・ ▲ 警告 R C柱型に立上り部がある場合は、別途R C 規準に従って設計してください。


PK-550-8 シリーズ





 $\Pi - 600 \times 600$ アンカーボルト:8本タイプ

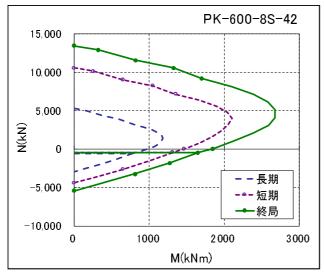
1) NCベース各部の寸法

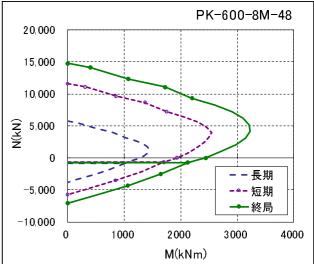
17 110 . 7	H HI 4	<i>/</i> —						
NCベース型式	D	d1	d2	BPL厚	L	t	1*	Нс
NO. NEW	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
PK-600-8S-42	828	728	550	55	840	22	186 [175]	1037
PK-600-8M-48	867	752	538	60	960	25	198 [187]	1160
PK-600-8L-56	900	765	526	70	1120	28	218 [207]	1323
PK-600-8X-64	925	775	516	75	1280	32	235 [224]	1487

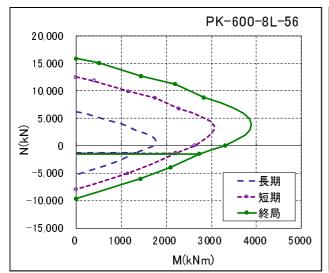
グラウト厚:50mm *:1は施工時の標準,[]内数値は注入金物無し時

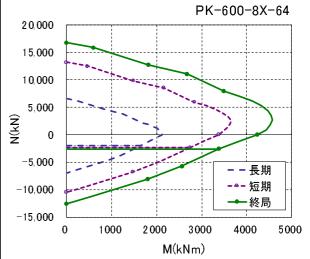
2) RC基礎柱型および基礎梁の詳細設計例

			A								
				基礎梁							
NCベース型式	柱径	注径 圧縮側領域				引張側領域					この補強筋※
NO. NELL	b	立上げ筋			フープ 筋		立上げ僚	1	フープ 筋	本数、	コーン破壊面
	(mm)	中柱	側柱	隅柱	/ / 用刀	中柱	側柱	隅柱	/ / 用刀	径、ピッチ	有効列数
PK-600-8S-42	1050	12-D25	16-D25	24-D25	D13@90	24-D25	24-D25	32-D25	D13@105	D13@150	4
PK-600-8M-48	1100	20-D25	20-D25	28-D25	D16@105	32-D25	36-D25	40-D25	D16@110	D13@300	3
PK-600-8L-56	1100	20-D25	20-D25	36-D25	D16@75	40-D25	44-D25	52-D25	D16@100	D13@125	7
PK-600-8X-64	1200	16-D29	20-D29	28-D29	⊞ D16@105	36-D29	40-D29	48-D29	D16@75	■ D13@200	5

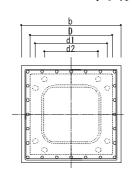

↑ 注意 立上げ筋の端部は、基本的にはフック無しとしています。

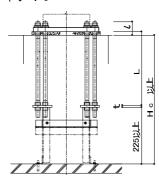

備考


- ・柱の類型は、下記の通りとします
 - ・隅柱: R C 基礎柱型に、基礎梁が直交2方向から取り付く場合


 - ・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合
- 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・N Cベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲が耐力を採用する場合には引張側領域の値を採用してください。
- ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は)内に示す寸法とします。
- ・鉄筋の材料規格は、D13,D16はSD295、D19,D22,D25はSD345、D29はSD390としています。
- ・プープ筋およびスタラップ筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします。
 - ・第一スタラップ筋の位置: R C 柱型の端部位置
- ・スタラップ筋の基礎梁側端部の位置:基礎梁の仮想的なコーン状破壊面位置(定着板より45°の範囲) 警告 柱の反曲点高さは、柱径550mm以下は1,500mm、柱径600mm以上は1,800mm、角形鋼管用の ▲ 警告 柱径900mm以上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合には、フープ筋量が不足する場合がありますので、別途ご検討下さい。 基礎梁としての必要な大きさ、主筋量およびスタラップ筋量は、別途ご検討下さい。 RC柱型に立上り部がある場合は、別途RC規準に従って設計してください。

PK-600-8 シリーズ





 $\Box -650 \times 650$ アンカーボルト:8本タイプ

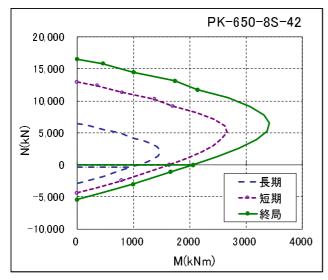
1) NCベース各部の寸法

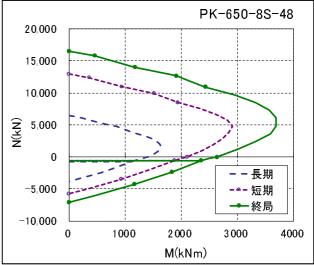
1/110 / //	<u> П ПРОУ Ј</u>	/							
NC^ `- z型式	D	d1	d2	BPL厚	L t 1*		1*	Нс	
110、 7至八	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)		(mm)
PK-650-8S-42	917	802	588	55	840	22	186	[175]	1037
PK-650-8S-48	917	802	588	60	960	25	198	[187]	1160
PK-650-8L-56	950	815	576	70	1120	28	218	[207]	1323
PK-650-8X-64	980	825	566	75	1280	32	235	[224]	1487
PK-650-8WX-72	1000	835	556	85	1440	36	257	[246]	1646

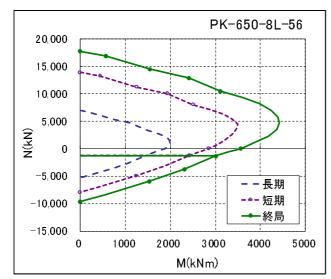
グラウト厚:50mm(55mm:M72の場合)*:1は施工時の標準,「]内数値は注入金物無し時

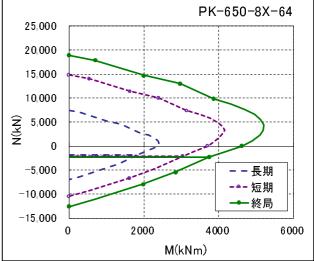
2) RC基礎柱型および基礎梁の詳細設計例

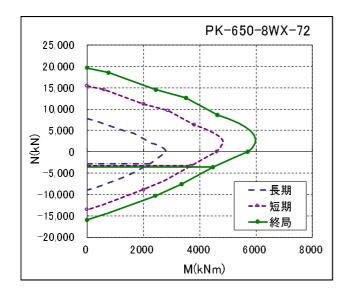
		PC/N-2			R C柱型					#17	林河。
				基礎梁							
NC^ ゚ース型式	柱径	径 圧縮側領域				引張側領域					さの補強筋※
NO. NE.D	b	立上げ筋			フープ 筋		立上げ筋	İ	フープ 筋	本数、	コーン破壊面
	(mm)	中柱	側柱	隅柱	/ / 用刀	中柱	側柱	隅柱	/ / 用刀	径、ピッチ	有効列数
PK-650-8S-42	1150	16-D25	20-D25	24-D25	D16@115	24-D25	28-D25	32-D25	D16@110	D13@250	3
PK-650-8S-48	1150	20-D25	20-D25	28-D25	D16@75	32-D25	36-D25	40-D25	D16@105	D13@300	3
PK-650-8L-56	1200	20-D25	24-D25	36-D25	D16@70	44-D25	48-D25	52-D25	D16@100	D13@200	5
PK-650-8X-64	1250	20-D29	20-D29	32-D29	⊞ D16@90	40-D29	40-D29	48-D29	D16@70	D13@125	8
PK-650-8WX-72	1400	16-D29	20-D29	36-D29	⊞ D16@95	40-D29	44-D29	60-D29	D16@80	■ D13@150	8

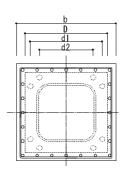

△ 注意 立上げ筋の端部は、基本的にはフック無しとしています。

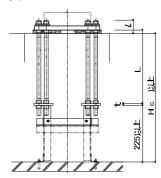

- ・柱の類型は、下記の通りとします。
 - ・隅柱: R C 基礎柱型に、基礎梁が直交2方向から取り付く場合


 - ・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合


- 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・N Cベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲が耐力を採用する場合には引張側領域の値を採用してください。
 ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は
-)内に示す寸法とします
- ・鉄筋の材料規格は、D13,D16はSD295、D19,D22,D25はSD345、D29はSD390としています。 ・フープ 筋およびスタラップ 筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします
 - ・ 第一スタラップ 筋の位置: R C 柱型の端部位置
 - ・ スタラップ 筋の基礎梁側端部の位置: 基礎梁の仮想的なコン状破壊面位置(定着板より45°の範囲)
- ・ ▲ 警告 柱の反曲点高さは、柱径550mm以下は1,500mm、柱径600mm以上は1,800mm、角形鋼管用の柱径900mm以上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合には、フープ筋量が不足する場合がありますので、別途ご検討下さい。
 ・ ▲ 警告 基礎梁としての必要な大きさ、主筋量およびスタラップ筋量は、別途ご検討下さい。
 ・ ▲ 警告 R C柱型に立上り部がある場合は、別途R C 規準に従って設計してください。


PK-650-8 シリーズ





 $\Box -700 \times 700$ アンカーボルト:8本タイプ

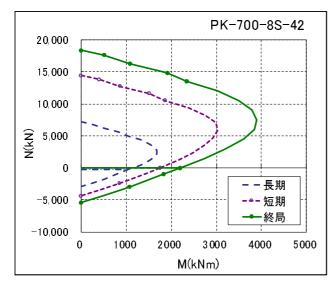
1) NCベース各部の寸法

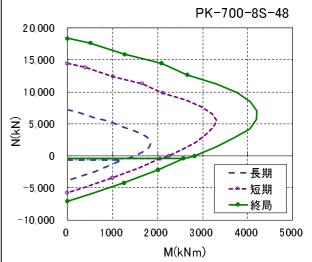
1/110 / //	<u>П ньох з</u>	144							
NCベース型式	D	d1	d2	BPL厚	L	t		1*	Нс
NO. NELL	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)		(mm)
PK-700-8S-42	967	852	638	55	840	22	186	[175]	1037
PK-700-8S-48	967	852	638	60	960	25	198	[187]	1160
PK-700-8L-56	1000	865	626	70	1120	28	218	[207]	1323
PK-700-8X-64	1030	875	616	75	1280	32	235	[224]	1487
PK-700-8WX-72	1050	885	606	85	1440	36	257	[246]	1646

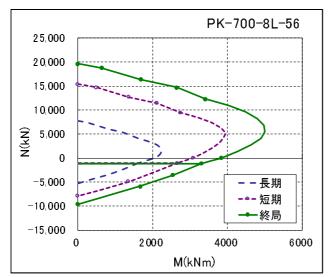
グラウト厚:50mm(55mm:M72の場合)*:1は施工時の標準,「]内数値は注入金物無し時

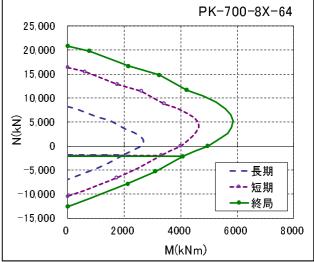
2) RC基礎柱型および基礎梁の詳細設計例

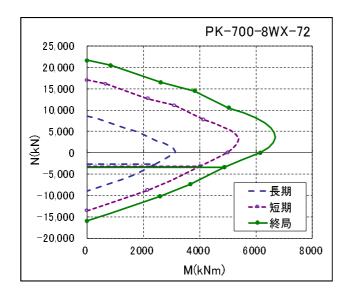
			A									
					RC柱型					基礎梁		
NCベース型式	柱径		圧縮	則領域	引張側領域					スタラップ形状の補強筋※		
NOV NELL	b	立上げ筋			フープ 筋		立上げ僚	İ	フープ 筋	本数、	コーン破壊面	
	(mm)	中柱	側柱	隅柱	ノーノ 月刀	中柱	側柱	隅柱	ノーノ 用刀	径、ピッチ	有効列数	
PK-700-8S-42	1200	20-D25	20-D25	24-D25	D16@67	28-D25	28-D25	32-D25	D16@110	D13@300	2	
PK-700-8S-48	1200	20-D25	24-D25	28-D25	D16@85	32-D25	36-D25	40-D25	D16@100	D13@300	3	
PK-700-8L-56	1200	24-D25	28-D25	40-D25	⊞ D16@65	48-D25	48-D25	52-D25	D16@90	D13@300	3	
PK-700-8X-64	1300	20-D29	24-D29	32-D29	⊞ D16@85	40-D29	40-D29	48-D29	D16@75	D13@150	7	
PK-700-8WX-72	1400	24-D29	28-D29	36-D29	⊞ D16@75	48-D29	52-D29	60-D29	D16@60	D13@125	9	

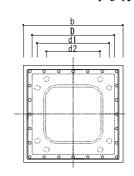

△ 注意 立上げ筋の端部は、基本的にはフック無しとしています。

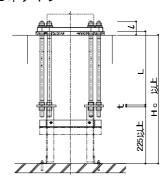

- ・柱の類型は、下記の通りとします。
 - ・隅柱: R C 基礎柱型に、基礎梁が直交2方向から取り付く場合


 - ・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合


- 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・N Cベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲が耐力を採用する場合には引張側領域の値を採用してください。
 ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は
-)内に示す寸法とします
- ・鉄筋の材料規格は、D13, D16はSD295、D19, D22, D25はSD345、D29はSD390としています。 ・フープ 筋およびスタラップ 筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします
 - ・ 第一スタラップ 筋の位置: R C 柱型の端部位置
 - ・ スタラップ 筋の基礎梁側端部の位置: 基礎梁の仮想的なコン状破壊面位置(定着板より45°の範囲)
- ・ ▲ 警告 柱の反曲点高さは、柱径550mm以下は1,500mm、柱径600mm以上は1,800mm、角形鋼管用の柱径900mm以上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合には、フープ筋量が不足する場合がありますので、別途ご検討下さい。
 ・ ▲ 警告 基礎梁としての必要な大きさ、主筋量およびスタラップ筋量は、別途ご検討下さい。
 ・ ▲ 警告 R C柱型に立上り部がある場合は、別途R C 規準に従って設計してください。


PK-700-8 シリーズ





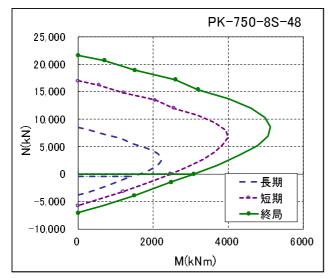
 $\Box -750 \times 750$ アンカーボルト:8本タイプ

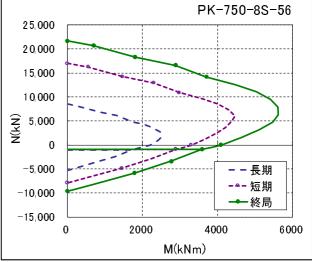
1) NCベース各部の寸法

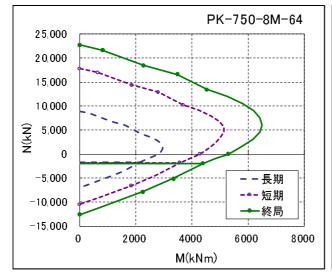
		7—							
NCベース型式	D	d1	d2	BPL厚 L t l*		Нс			
NO. NEX	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)		(mm)
PK-750-8S-48	1050	915	676	60	960	25	198	[187]	1160
PK-750-8S-56	1050	915	676	70	1120	28	218	[207]	1323
PK-750-8M-64	1075	925	666	75	1280	32	235	[224]	1487
PK-750-8L-72	1095	935	656	85	1440	36	257	[246]	1646

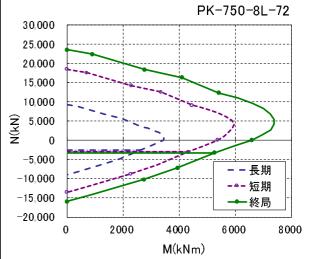
グラウト厚:50mm(55mm:M72の場合)*:1は施工時の標準,「]内数値は注入金物無し時

2) RC基礎柱型および基礎梁の詳細設計例

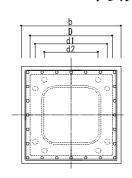

二,1、0至於任工000,0至於次少計中國於計77													
					RC柱型					基礎梁			
NCベース型式	柱径	E径 圧縮側領域				引張側領域					スタラップ形状の補強筋※		
NOV NELL	b	立上げ筋			フープ 筋		立上げ僚	Z上げ筋		本数、	コーン破壊面		
	(mm)	中柱	側柱	隅柱	/ / 用刀	中柱	側柱	隅柱	フープ 筋	径、ピッチ	有効列数		
PK-750-8S-48	1250	24-D25	24-D25	32-D25	⊞ D16@100	36-D25	36-D25	40-D25	D16@100	D13@300	3		
PK-750-8S-56	1250	28-D25	28-D25	40-D25	⊞ D16@80	48-D25	48-D25	52-D25	D16@95	D13@300	3		
PK-750-8M-64	1350	24-D29	24-D29	32-D29	⊞ D16@70	44-D29	44-D29	48-D29	D16@70	D13@300	4		
PK-750-8L-72	1450	28-D29	32-D29	36-D29	⊞ D16@95	52-D29	56-D29	60-D29	D16@58	D13@200	6		

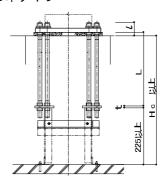

↑ 注意 立上げ筋の端部は、基本的にはフック無しとしています。


- ・柱の類型は、下記の通りとします
 - ・隅柱: R C 基礎柱型に、基礎梁が直交2方向から取り付く場合


 - ・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合
- 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・N Cベース耐力線図(次頁)において、横線の上側領域の曲が耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲が耐力を採用する場合には引張側領域の値を採用してください。
- ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は)内に示す寸法とします。
- ・鉄筋の材料規格は、D13,D16はSD295、D19,D22,D25はSD345、D29はSD390としています。 ・フープ 筋およびスクラップ筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします。
 - ・第一スタラップ筋の位置: R C 柱型の端部位置
- ・ スタラッップ 筋の基礎梁側端部の位置:基礎梁の仮想的なコーン状破壊面位置(定着板より45°の範囲)・ <u>小</u> 警告 柱の反曲点高さは、柱径550mm以下は1,500mm、柱径600mm以上は1,800mm、角形鋼管用の 柱径900mm以上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合には、フープ筋量が不足する場合がありますので、別途ご検討下さい。 基礎梁としての必要な大きさ、主筋量およびスタラップ筋量は、別途ご検討下さい。 R C柱型に立上り部がある場合は、別途R C 規準に従って設計してください。

PK-750-8 シリーズ





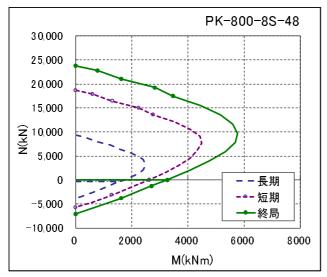
 $\Pi - 800 \times 800$ アンカーボルト:8本タイプ

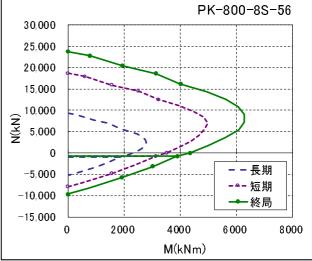
1) N C ベース各部の寸法

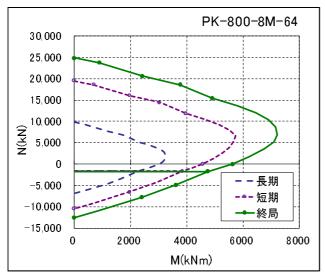
NCベース型式	D (mm)	d1 (mm)	d2 (mm)	BPL厚 (mm)	L (mm)	t (mm)	1	mm)	Hc (mm)
PK-800-8S-48	1100	965	726	60	960	25	198	[187]	1160
PK-800-8S-56	1100	965	726	70	1120	28	218	[207]	1323
PK-800-8M-64	1125	975	716	75	1280	32	235	[224]	1487
PK-800-8L-72	1145	985	706	85	1440	36	257	[246]	1646

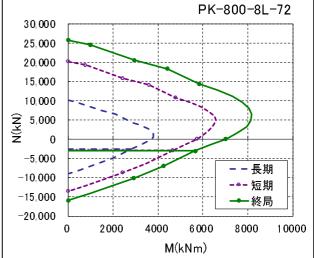
グラウト厚:50mm(55mm:M72の場合)*:1は施工時の標準,「]内数値は注入金物無し時

2) RC基礎柱型および基礎梁の詳細設計例

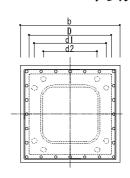

二人八〇坐院任											eld. Yes
					RC柱型					基位	濋梁
NCベース型式	C^*-z型式 柱径 圧縮側領域					領域 引張側領域					
NO. NELL	b		立上げ筋		フープ 筋		立上げ筋		フープ 筋	本数、	コーン破壊面
	(mm)	中柱	側柱	隅柱	/ / 用刀	中柱	側柱	隅柱	/ / 用刀	径、ピッチ	有効列数
PK-800-8S-48	1300	24-D25	24-D25	32-D25	⊞ D16@65	36-D25	36-D25	40-D25	D16@95	D13@300	3
PK-800-8S-56	1350	24-D25	28-D25	40-D25	⊞ D16@65	44-D25	48-D25	52-D25	D16@115	D13@250	4
PK-800-8M-64	1450	24-D29	28-D29	32-D29	⊞ D16@75	44-D29	44-D29	48-D29	D16@75	D13@300	4
PK-800-8L-72	1550	32-D29	36-D29	36-D29	⊞ D16@95	56-D29	56-D29	60-D29	D16@62	D13@300	4

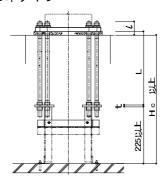

↑ 注意 立上げ筋の端部は、基本的にはフック無しとしています。


- ・柱の類型は、下記の通りとします
 - ・隅柱: R C 基礎柱型に、基礎梁が直交2方向から取り付く場合


 - ・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合
- 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・N Cベース耐力線図(次頁)において、横線の上側領域の曲が耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲が耐力を採用する場合には引張側領域の値を採用してください。
- ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は)内に示す寸法とします。
- ・鉄筋の材料規格は、D13,D16はSD295、D19,D22,D25はSD345、D29はSD390としています。
- ・フープ筋およびスタラップ筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします。
 - ・第一スタラップ筋の位置: R C 柱型の端部位置
- ・ スタラップ 筋の基礎梁側端部の位置:基礎梁の仮想的なコーン状破壊面位置(定着板より45°の範囲)・ <u>小</u> 警告 柱の反曲点高さは、柱径550mm以下は1,500mm、柱径600mm以上は1,800mm、角形鋼管用の 柱径900mm以上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合には、フープ筋量が不足する場合がありますので、別途ご検討下さい。 基礎梁としての必要な大きさ、主筋量およびスタラップ筋量は、別途ご検討下さい。 RC柱型に立上り部がある場合は、別途RC規準に従って設計してください。

PK-800-8 シリーズ





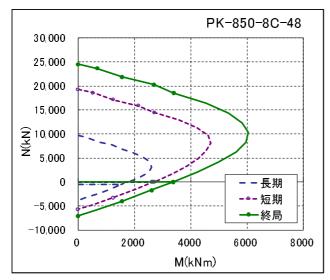
 $\Pi - 850 \times 850$ アンカーボルト:8本タイプ

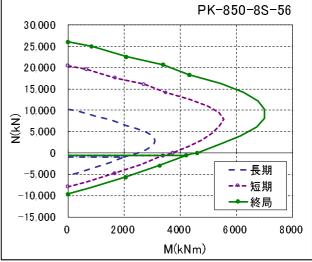
1) N C ベース各部の寸法

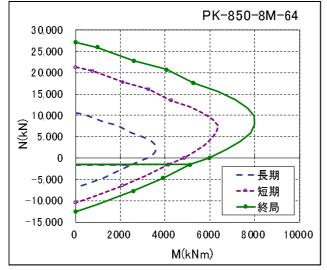
., ., .,		, —							
NCベース型式	D	d1	d2	BPL厚	L	t		1*	Нс
NO. NEW	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
PK-850-8C-48	1117	1002	788	60	960	25	198	[187]	1160
PK-850-8S-56	1150	1015	776	70	1120	28	218	[207]	1323
PK-850-8M-64	1175	1025	766	75	1280	32	235	[224]	1487
PK-850-8L-72	1195	1035	756	85	1440	36	257	[246]	1646

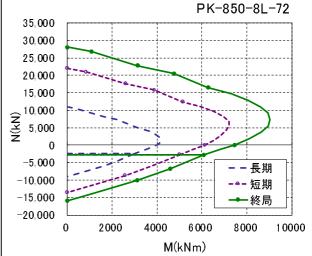
グラウト厚:50mm(55mm:M72の場合)*:1は施工時の標準,「]内数値は注入金物無し時

2) RC基礎柱型および基礎梁の詳細設計例

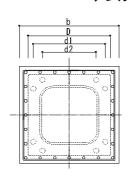

三/八〇里就任			A									
			•	•	RC柱型			•		基		
NCベース型式	柱径		圧縮	則領域			引張	則領域		スタラップ形状の補強筋		
NO. NELL	b		立上げ筋	1	フープ 筋		立上げ僚	1	フープ 筋	本数、	コーン破壊面	
	(mm)	中柱	側柱	隅柱	/ / 用刀	中柱	側柱	隅柱	/ / 用刀	径、ピッチ	有効列数	
PK-850-8C-48	1350	24-D25	28-D25	32-D25	⊞ D16@90	36-D25	36-D25	40-D25	D16@147	D13@300	3	
PK-850-8S-56	1400	28-D25	32-D25	40-D25	⊞ D16@55	48-D25	48-D25	52-D25	D16@115	D13@300	3	
PK-850-8M-64	1450	24-D29	28-D29	32-D29	Ⅲ D16@70	44-D29	44-D29	48-D29	D16@75	D13@300	4	
PK-850-8L-72	1550	32-D29	36-D29	36-D29	⊞ D16@80	56-D29	56-D29	60-D29	D16@60	D13@300	4	

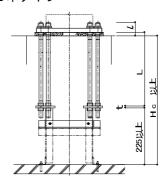

↑ 注意 立上げ筋の端部は、基本的にはフック無しとしています。


- ・柱の類型は、下記の通りとします
 - ・隅柱: R C 基礎柱型に、基礎梁が直交2方向から取り付く場合


 - ・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合
- 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・N Cベース耐力線図(次頁)において、横線の上側領域の曲が耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲が耐力を採用する場合には引張側領域の値を採用してください。
- ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は)内に示す寸法とします。
- ・鉄筋の材料規格は、D13,D16はSD295、D19,D22,D25はSD345、D29はSD390としています。
- ・フープ筋およびスタラップ筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします。
 - ・第一スタラップ筋の位置: R C 柱型の端部位置
- ・スタラップ筋の基礎梁側端部の位置:基礎梁の仮想的なコーン状破壊面位置(定着板より45°の範囲) 警告 柱の反曲点高さは、柱径550mm以下は1,500mm、柱径600mm以上は1,800mm、角形鋼管用の 柱径900mm以上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合には、フープ筋量が不足する場合がありますので、別途ご検討下さい。 基礎梁としての必要な大きさ、主筋量およびスタラップ筋量は、別途ご検討下さい。 RC柱型に立上り部がある場合は、別途RC規準に従って設計してください。

PK-850-8 シリーズ





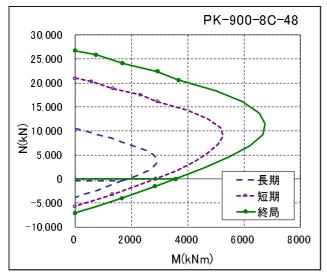
 $\Box -900 \times 900$ アンカーボルト:8本タイプ

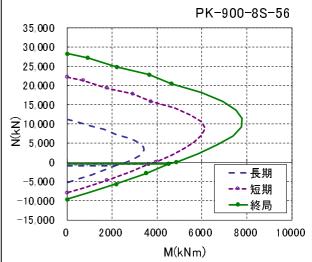
N C ベース各部の寸法

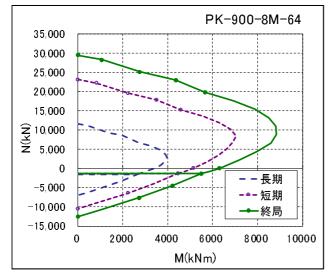
NCベース型式	D	d1	d2	BPL厚	L	t	1*	Нс
NUNTAELL	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
PK-900-8C-48	1167	1052	838	60	960	25	198 [18	7] 1160
PK-900-8S-56	1200	1065	826	70	1120	28	218 [20	7] 1323
PK-900-8M-64	1225	1075	816	75	1280	32	235 [22	4] 1487
PK-900-8L-72	1245	1085	806	85	1440	36	257 [24	.6] 1646

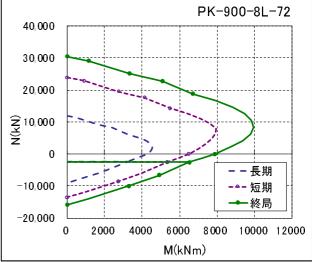
グラウト厚:50mm(55mm:M72の場合)*:1は施工時の標準, []内数値は注入金物無し時

2) RC基礎柱型および基礎梁の詳細設計例

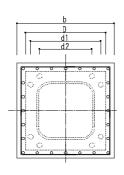

			A								
				•	RC柱型			•		基	濋 梁
NC^ ゚ース型式	ICA - 7型式 柱径 圧縮側領域							スタラップ形状の補強筋※			
NO. NELL	b		立上げ筋	1	フープ 筋	立上げ筋			フープ 筋	本数、	コーン破壊面
	(mm)	中柱	側柱	隅柱	/ / 用刀	中柱	側柱	隅柱	7 7 月刀	径、ピッチ	有効列数
PK-900-8C-48	1400	24-D25	28-D25	32-D25	⊞ D16@95	36-D25	36-D25	40-D25	D16@142	D13@300	3
PK-900-8S-56	1400	32-D25	32-D25	40-D25	⊞ D16@70	48-D25	48-D25	52-D25	D16@120	D13@300	3
PK-900-8M-64	1450	24-D29	28-D29	32-D29	⊞ D16@60	44-D29	44-D29	48-D29	D16@80	D13@300	4
PK-900-8L-72	1550	32-D29	36-D29	36-D29	⊞ D16@80	56-D29	56-D29	60-D29	D16@65	D13@300	4

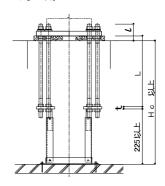

↑ 注意 立上げ筋の端部は、基本的にはフック無しとしています。


- ・柱の類型は、下記の通りとします。
 - ・隅柱: R C 基礎柱型に、基礎梁が直交2方向から取り付く場合


 - ・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合
- 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・N Cベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲が耐力を採用する場合には引張側領域の値を採用してください。
- ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は)内に示す寸法とします。
- ・鉄筋の材料規格は、D13,D16はSD295、D19,D22,D25はSD345、D29はSD390としています。
 ・フープ 筋およびスタラップ 筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします。
 - ・第一スタラップ筋の位置: R C柱型の端部位置
 - ・ スタラップ 筋の基礎梁側端部の位置: 基礎梁の仮想的なコン状破壊面位置(定着板より45°の範囲)
- ・ ▲ 警告 柱の反曲点高さは、柱径550mm以下は1,500mm、柱径600mm以上は1,800mm、角形鋼管用の柱径900mm以上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合には、フープ筋量が不足する場合がありますので、別途ご検討下さい。
 ・ ▲ 警告 基礎梁としての必要な大きさ、主筋量およびスタラップ筋量は、別途ご検討下さい。
 ・ ▲ 警告 R C柱型に立上り部がある場合は、別途R C 規準に従って設計してください。

PK-900-8 シリーズ





付 1 RC基礎柱型および基礎梁の詳細設計例

 $\Box -350 \times 350 \sim \Box -450 \times 450$ 特に大きい圧縮力への対応用

N C ベース各部の寸法

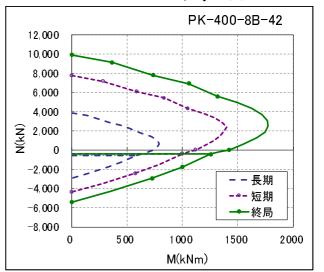
NCベース型式	D (mm)	d1 (mm)	d2 (mm)	BPL厚 (mm)	L (mm)	t (mm)	1* (mm)	He (mm)
PK-350-8B-42	640	500	330	55	840	25	186 [175]	1040
PK-400-8B-42	710	550	380	60	840	25	191 [180]	1040
PK-450-8B-48	760	630	430	65	960	28	203 [192]	1163

グラウト厚:50mm *:1は施工時の標準,[]内数値は注入金物無し時

2) RC基礎は型および基礎梁の詳細設計例

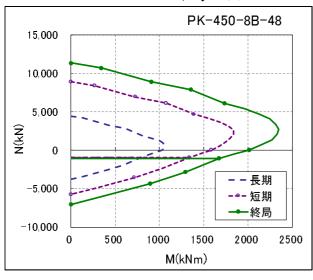
2/ RC基礎性主的よび基礎未の計削設計例												
					RC柱型					基础		
NCベース型式	柱径		圧縮	則領域			引張	則領域		スタラップ形状の補強筋※		
NOV NELL	b	立上げ筋	1	フープ 筋		立上げ筋	1	フープ 筋		コーン破壊面		
	(mm) 中柱 側柱 隅柱					中柱	側柱	隅柱	/ / 周川	径、ピッチ	有効列数	
PK-350-8B-42	800	8-D25	12-D25	20-D25	D13@100	20-D25	20-D25	32-D25	D13@100	D13@100	7	
PK-400-8B-42	870	8-D25	12-D25	20-D25	D13@75	20-D25	20-D25	32-D25	D13@120	D13@100	7	
PK-450-8B-48	1000	20-D25	20-D25	24-D25	D16@105	32-D25	36-D25	40-D25	D16@105	D13@300	3	

注意 立上げ筋の端部は、基本的にはフック無しとしています。

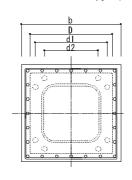

- ・柱の類型は、下記の通りとします。
 - ・隅柱:RC基礎柱型に、基礎梁が直交2方向から取り付く場合・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合

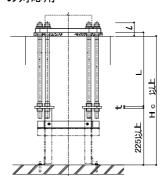
- ・鉄筋の材料規格は、D13,D16はSD295、D19,D22,D25はSD345、D29はSD390としています。
- ・プープ筋およびスタラップ筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします。
 ・第一スタラップ筋の位置:RC柱型の端部位置
 ・スタラップ筋の基礎梁側端部の位置:基礎梁の仮想的なコン状破壊面位置(定着板より45°の範囲)

PK-350-8B シリーズ


PK-350-8B-42 10,000 8,000 6,000 4,000 2,000 -2,000- - 長期 -4,000 --- 短期 -6,000 -終局 -8,000500 1000 1500

PK-400-8B シリーズ




PK-450-8B シリーズ

M(kNm)

 $\Box -500 \times 500 \sim \Box -700 \times 700$ 特に大きい圧縮力への対応用

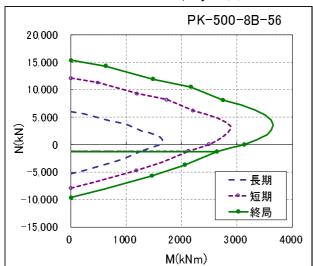
1) N Cベース各部の寸法

1) NO: V	ני לסוום די	/4							
NC^*->型式	D	d1	d2	BPL厚	L	t		1*	Нс
110、 7至八	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
PK-500-8B-56	885	710	480	75	1120	36	223	[212]	1331
PK-550-8B-56	935	760	530	75	1120	36	223	[212]	1331
PK-600-8B-64	1040	830	570	85	1280	32	245	[234]	1487
PK-650-8B-64	1090	890	630	85	1280	32	245	[234]	1487
PK-700-8B-64	1140	960	700	85	1280	32	245	[234]	1487

グラウト厚:50mm *:1は施工時の標準,[]内数値は注入金物無し時

2) RC基礎柱型および基礎梁の詳細設計例

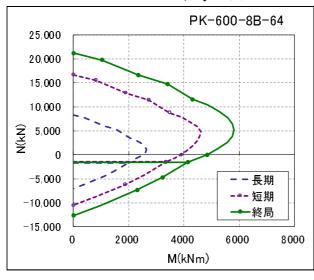
			A									
					RC柱型					基		
NCベース型式	柱径		圧縮	則領域			引張	則領域		スタラップ形状の補強筋※		
NO. NELL	b	b 立上げ筋				立上げ筋		1	フープ 筋	本数、	コーン破壊面	
	(mm)	中柱	側柱	隅柱	フープ 筋	中柱	側柱	隅柱	ノーノー月刀	径、ピッチ	有効列数	
PK-500-8B-56	1100	24-D25	24-D25	36-D25	⊞ D16@90	48-D25	48-D25	52-D25	D16@85	D13@300	3	
PK-550-8B-56	1150	24-D25	24-D25	36-D25	⊞ D16@70	48-D25	48-D25	52-D25	D16@90	D13@300	3	
PK-600-8B-64	1250	20-D29	24-D29	36-D29	⊞ D16@75	40-D29	44-D29	48-D29	D16@65	■ D13@200	5	
PK-650-8B-64	1350	24-D29	24-D29	36-D29	⊞ D16@75	44-D29	44-D29	48-D29	D16@70	D13@300	4	
PK-700-8B-64	1400	24-D29	28-D29	36-D29	⊞ D16@90	44-D29	44-D29	48-D29	D16@75	D13@300	4	

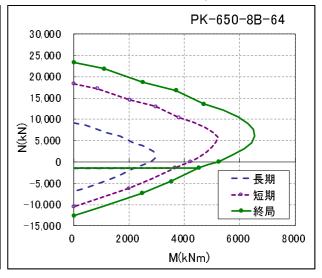

△ 注意 立上げ筋の端部は、基本的にはフック無しとしています。

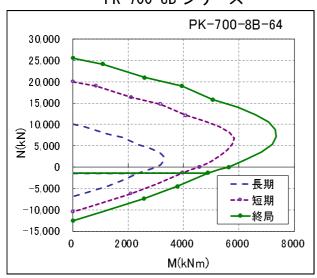
- ・柱の類型は、下記の通りとします。
 - ・隅柱: R C 基礎柱型に、基礎梁が直交2方向から取り付く場合

 - ・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合 ・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合

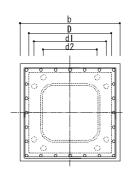
- 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・N Cベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲が耐力を採用する場合には引張側領域の値を採用してください。
 ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は
-)内に示す寸法とします
- ・鉄筋の材料規格は、D13, D16はSD295、D19, D22, D25はSD345、D29はSD390としています。
 ・フープ筋およびスタラップ筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします
 - ・ 第一スタラップ 筋の位置: R C 柱型の端部位置
 - ・ スタラップ 筋の基礎梁側端部の位置: 基礎梁の仮想的なコン状破壊面位置(定着板より45°の範囲)
- 市の基礎条例端部の位置: 基礎条の収売的なコン状収壊面位置(定有板より45 の範囲) 柱の反曲点高さは、柱径550mm以下は1,500mm、柱径600mm以上は1,800mm、角形鋼管用の 柱径900mm以上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合 には、フープ筋量が不足する場合がありますので、別途ご検討下さい。 基礎梁としての必要な大きさ、主筋量およびスタラップ筋量は、別途ご検討下さい。 R C柱型に立上り部がある場合は、別途R C 規準に従って設計してください。

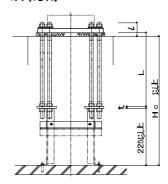

PK-500-8B シリーズ


PK-550-8B シリーズ


PK-600-8B シリーズ

PK-650-8B シリーズ




PK-700-8B シリーズ

付1 RC基礎柱型および基礎梁の詳細設計例

ロー750×750~□-900×900 特に大きい圧縮力への対応用

1) NCベース各部の寸法

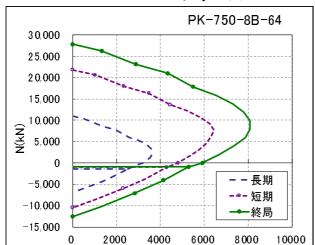
_	T/ NUN A		<i>1</i> 4						
I	NC^ `- z型式	D	d1	d2	BPL厚	L	t	1*	Нс
l	110、 /主八	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
I	PK-750-8B-64	1190	990	730	85	1280	32	245 [234]	1487
	PK-800-8B-64	1250	1050	790	85	1280	32	245 [234]	1487
	PK-850-8B-64	1300	1100	840	85	1280	32	245 [234]	1487
ĺ	PK-900-8B-64	1350	1150	890	85	1280	32	245 [234]	1487

グラウト厚:50mm *:1は施工時の標準,「]内数値は注入金物無し時

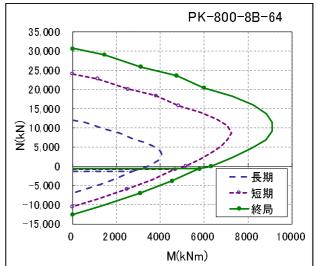
2) RC基礎柱型および基礎梁の詳細設計例

27 代 3 至於代 至 60 5 6 至於 朱 5 計 間 於 日 7 1													
				•	RC柱型					基征			
NC^ `-ス型式	柱径		圧縮	則領域		引張側領域					スタラップ形状の補強筋※		
NCハ - /至八	b		立上げ僚	I	フープ 筋	立上げ筋			フープ 筋	本数、	コーン破壊面		
	(mm)	中柱	側柱	隅柱	ノーノ 月刀	中柱	側柱	隅柱	ノーノ 月刀	径、ピッチ	有効列数		
PK-750-8B-64	1450	24-D29	28-D29	32-D29	⊞ D16@85	44-D29	44-D29	44-D29	D16@70	D13@300	4		
PK-800-8B-64	1500	28-D29	28-D29	32-D29	⊞ D16@75	44-D29	44-D29	44-D29	D16@75	D13@300	4		
PK-850-8B-64	1550	28-D29	32-D29	32-D29	⊞ D16@70	44-D29	44-D29	44-D29	D16@75	D13@300	4		
PK-900-8B-64	1600	28-D29	32-D29	32-D29	⊞ D16@75	44-D29	44-D29	44-D29	D16@75	D13@300	4		

↑ 注意 立上げ筋の端部は、基本的にはフック無しとしています。

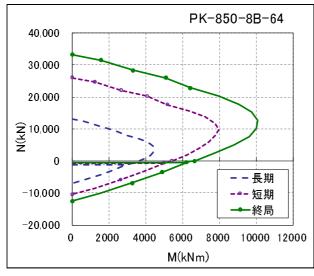

備考

- ・柱の類型は、下記の通りとします。
 - ・隅柱:RC基礎柱型に、基礎梁が直交2方向から取り付く場合
 - ・側柱: R C 基礎柱型に、基礎梁が3方向から取り付く場合
 - ・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合

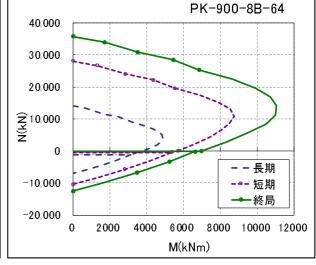

独立柱等、上記の類型以外の場合は、別途ご検討下さい。

- ・N Cベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側 領域の値を採用し、下側領域の曲げ耐力を採用する場合には引張側領域の値を採用してください。
- ・柱径 b(mm) は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は () 内に示す寸法とします。
- ・鉄筋の材料規格は、D13, D16はSD295、D19, D22, D25はSD345、D29はSD390としています。
- ・フープ筋およびスタラップ筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします。
 - ・第一スタラップ筋の位置: R C柱型の端部位置
 - ・スタラップ筋の基礎梁側端部の位置:基礎梁の仮想的なコン状破壊面位置(定着板より45゚の範囲)
- ・ <u>小</u> 警告 柱の反曲点高さは、柱径550mm以下は1,500mm、柱径600mm以上は1,800mm、角形鋼管用の 柱径900mm以上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合 には、フープ筋量が不足する場合がありますので、別途ご検討下さい。
- ◆ 警告 基礎梁としての必要な大きさ、主筋量およびスタラップ筋量は、別途ご検討下さい。
- ・ △ 警告 R C柱型に立上り部がある場合は、別途R C 規準に従って設計してください。

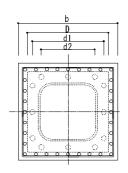
PK-750-8B シリーズ

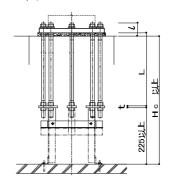


PK-800-8B シリーズ



PK-850-8B シリーズ


M(kNm)



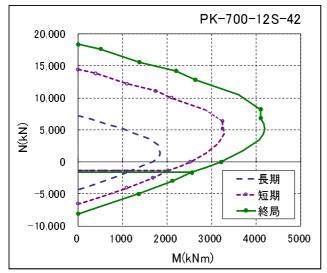
PK-900-8B シリーズ

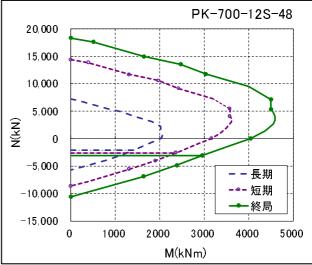
 $\Box -700 \times 700$ アンカーボルト: 12本タイプ

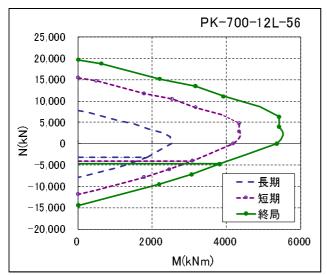
1) NCベース各部の寸法

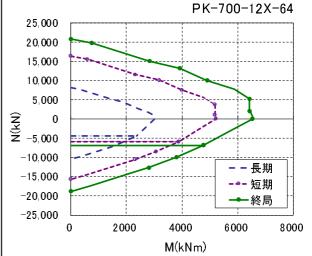
17 110 17	H H P P P J	74							
NCベース型式	D	d1	d2	BPL厚	L	t	1	*	Нс
NON A主以	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(n	nm)	(mm)
PK-700-12S-42	967	852	638	55	840	22	186	[175]	1037
PK-700-12S-48	967	852	638	60	960	25	198	[187]	1160
PK-700-12L-56	1000	865	626	70	1120	28	218	[207]	1323
PK-700-12X-64	1030	875	616	75	1280	32	235	[224]	1487

グラウト厚:50mm *:1は施工時の標準, []内数値は注入金物無し時

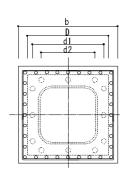

2) RC基礎柱型および基礎梁の詳細設計例

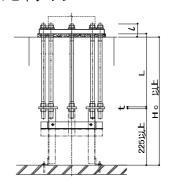

		生えんべい		11 17 1								
					RC柱型	1				基礎梁		
NCベース型式	柱径		圧縮側領域				引張	則領域		スタラップ。形状	さの補強筋※	
NO、 N主以	b		立上げ簱		フープ筋		立上げ僚		フープ 筋		コーン破壊面	
	(mm)	中柱	側柱	隅柱	/ / AD	中柱	側柱	隅柱	/ / AN	径、ピッチ	有効列数	
PK-700-12S-42	1200	24-D25	28-D25	28-D25	D16@75	40-D25	40-D25	40-D25	D16@100	D16@300	2	
PK-700-12S-48	1250	28-D25	32-D25	36-D25	D16@55	48-D25	52-D25	52-D25	D16@100	D16@300	3	
PK-700-12L-56	1300	32-D29	32-D29	36-D29	⊞ D16@70	48-D29	52-D29	52-D29	D16@75	D16@300	3	
PK-700-12X-64	1550	40-D29	44-D29	52-D29	⊞ D16@73	64-D29	68-D29	68-D29	D16@75	D16@200	5	


立上げ筋の端部は、基本的にはフック無しとしています。 注意 ただし、アンカーボルト:12本タイプで、引張側領域で使用する場合は 全てフック有りとします。


- ・柱の類型は、下記の通りとします。
 - ・隅柱: R C 基礎柱型に、基礎梁が直交2方向から取り付く場合
 - ・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合
- 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・N Cベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲げ耐力を採用する場合には引張側領域の値を採用してください。
- ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は)内に示す寸法とします。
- ・鉄筋の材料規格は、D13, D16はSD295、D19, D22, D25はSD345、D29はSD390としています。
 ・フープ 筋およびスタラップ筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします
 - ・第一スタラップ筋の位置: R C柱型の端部位置
 - ・ スタラップ 筋の基礎梁側端部の位置: 基礎梁の仮想的なコーン状破壊面位置(定着板より45゚の範囲)

PK-700-12 シリーズ



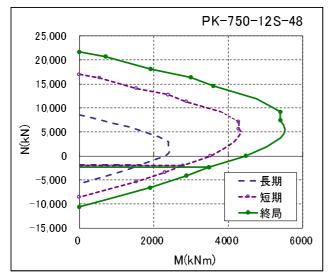


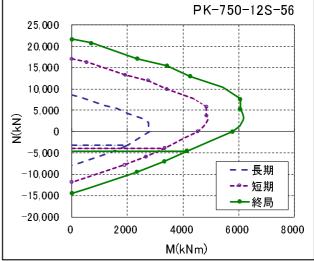
 $\Box -750 \times 750$ アンカーボルト: 12本タイプ

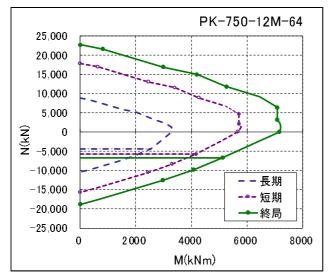
1) NCベース各部の寸法

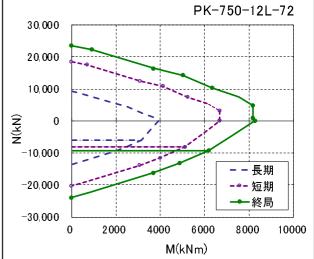
NCベース型式	D	d1	d2	BPL厚	L	t		1*	Нс
NON NELL	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
PK-750-12S-48	1050	915	676	60	960	25	198	[187]	1160
PK-750-12S-56	1050	915	676	70	1120	28	218	[207]	1323
PK-750-12M-64	1075	925	666	75	1280	32	235	[224]	1487
PK-750-12L-72	1095	935	656	85	1440	36	257	[246]	1646

グラウト厚:50mm(55mm:M72の場合*:1は施工時の標準,[]内数値は注入金物無し時

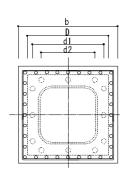

2) RC基礎柱型および基礎梁の詳細設計例

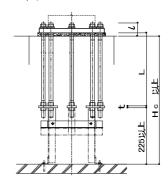

2/八〇圣诞任:	±1350	一生ルイン		1 173								
					RC柱型	1				基礎梁		
NC^゛-z型式	柱径		圧縮	則領域			引張	則領域		スタラップ。形状	この補強筋※	
NON X主以	b		立上げ僚		フープ筋		立上げ僚		フープ 筋		コーン破壊面	
	(mm)	中柱	側柱	隅柱	/ / 周刀	中柱	側柱	隅柱	/ / AN	径、ピッチ	有効列数	
PK-750-12S-48	1250	32-D25	32-D25	36-D25	⊞ D16@70	48-D25	52-D25	52-D25	D16@130	D16@300	3	
PK-750-12S-56	1300	32-D29	32-D29	36-D29	⊞ D16@70	48-D29	52-D29	52-D29	D16@75	D16@300	3	
PK-750-12M-64	1500	40-D29	44-D29	44-D29	⊞ D16@56	64-D29	68-D29	68-D29	D16@71	D16@300	4	
PK-750-12L-72	1800	44-D29	48-D29	60-D29	⊞ D16@70	72-D29	76-D29	84-D29	D16@80	D16@100	10	


立上げ筋の端部は、基本的にはフック無しとしています。 注意 ただし、アンカーボルト:12本タイプで、引張側領域で使用する場合は 全てフック有りとします。


- ・柱の類型は、下記の通りとします。
 - ・隅柱: R C 基礎柱型に、基礎梁が直交2方向から取り付く場合
 - ・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合
- 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・N Cベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲げ耐力を採用する場合には引張側領域の値を採用してください。
- ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は)内に示す寸法とします。
- ・鉄筋の材料規格は、D13, D16はSD295、D19, D22, D25はSD345、D29はSD390としています。 ・フープ 筋およびスタラップ筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします
 - ・第一スタラップ筋の位置: R C柱型の端部位置
 - ・ スタラップ 筋の基礎梁側端部の位置: 基礎梁の仮想的なコーン状破壊面位置(定着板より45゚の範囲)

PK-750-12 シリーズ



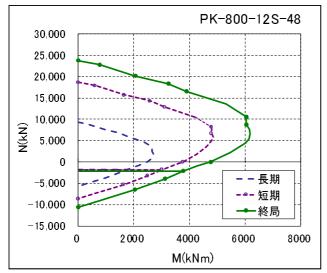


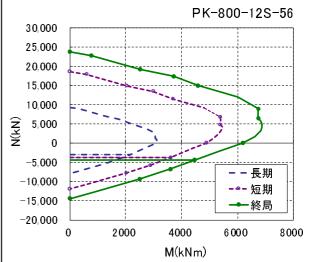
 $\Box -800 \times 800$ アンカーボルト: 12本タイプ

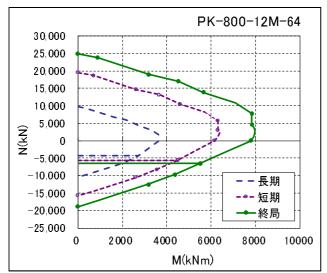
1) NCベース各部の寸法

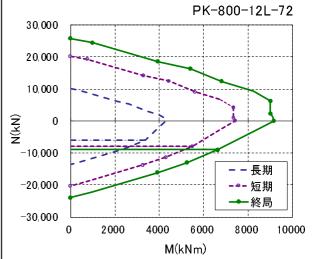
NCベース型式	D	d1	d2	BPL厚	L	t		1*	Нс
NON NELL	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
PK-800-12S-48	1100	965	726	60	960	25	198	[187]	1160
PK-800-12S-56	1100	965	726	70	1120	28	218	[207]	1323
PK-800-12M-64	1125	975	716	75	1280	32	235	[224]	1487
PK-800-12L-72	1145	985	706	85	1440	36	257	[246]	1646

グラウト厚:50mm(55mm:M72の場合*:1は施工時の標準,[]内数値は注入金物無し時

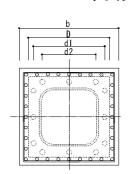

2) RC基礎柱型および基礎梁の詳細設計例

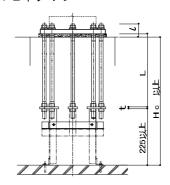

	± 00 0 0	エルベンベッ		11 17 1								
					RC柱型	1				基礎梁		
NCベース型式	柱径		圧縮側領域				引張	則領域		スタラップ。形状	さの補強筋※	
NO、 N主以	b		立上げ簱		フープ筋		立上げ簱		フープ 筋		コーン破壊面	
	(mm)	中柱	側柱	隅柱	/ / AD	中柱	側柱	隅柱	/ / AN	径、ピッチ	有効列数	
PK-800-12S-48	1300	32-D25	32-D25	36-D25	⊞ D16@65	48-D25	52-D25	52-D25	D16@135	D16@300	3	
PK-800-12S-56	1400	32-D29	32-D29	36-D29	⊞ D16@60	48-D29	52-D29	52-D29	D16@85	D16@300	3	
PK-800-12M-64	1550	40-D29	44-D29	44-D29	⊞ D16@55	64-D29	64-D29	68-D29	D16@70	D16@300	4	
PK-800-12L-72	1800	40-D29	48-D29	56-D29	⊞ D16@60	72-D29	76-D29	84-D29	D16@85	D16@100	10	


立上げ筋の端部は、基本的にはフック無しとしています。 注意 ただし、アンカーボルト:12本タイプで、引張側領域で使用する場合は 全てフック有りとします。


- ・柱の類型は、下記の通りとします。
 - ・隅柱: R C 基礎柱型に、基礎梁が直交2方向から取り付く場合
 - ・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合
- 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・N Cベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲げ耐力を採用する場合には引張側領域の値を採用してください。
- ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は)内に示す寸法とします。
- ・鉄筋の材料規格は、D13, D16はSD295、D19, D22, D25はSD345、D29はSD390としています。
 ・フープ 筋およびスタラップ筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします
 - ・第一スタラップ筋の位置: R C柱型の端部位置
 - ・ スタラップ 筋の基礎梁側端部の位置: 基礎梁の仮想的なコーン状破壊面位置(定着板より45゚の範囲)

PK-800-12 シリーズ



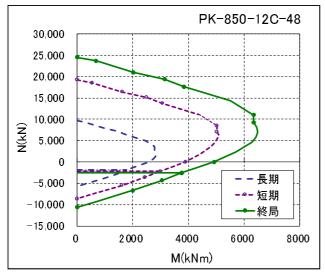


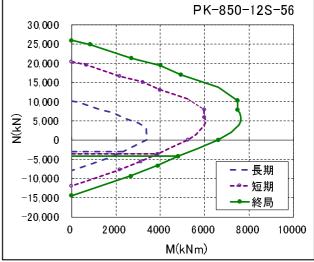
 $\Box -850 \times 850$ アンカーボルト: 12本タイプ

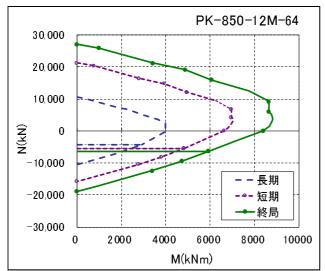
1) NCベース各部の寸法

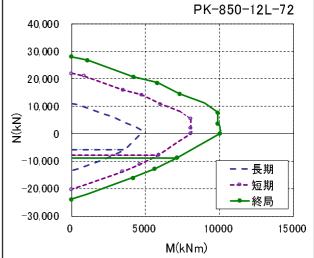
NCベース型式	D	d1	d2	BPL厚	L	t		1*	Нс
NON NELL	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
PK-850-12C-48	1117	1002	788	60	960	25	198	[187]	1160
PK-850-12S-56	1150	1015	776	70	1120	28	218	[207]	1323
PK-850-12M-64	1175	1025	766	75	1280	32	235	[224]	1487
PK-850-12L-72	1195	1035	756	85	1440	36	257	[246]	1646

グラウト厚:50mm(55mm:M72の場合*:1は施工時の標準,[]内数値は注入金物無し時

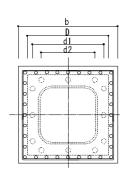

2) RC基礎柱型および基礎梁の詳細設計例

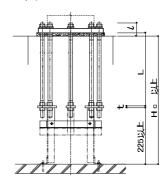

	<u> </u>	主人人へ		11 17 1								
					R C柱型	1				基礎梁		
NCベース型式	柱径		圧縮	側領域			引張	則領域		スタラップ形状の補強筋※		
NO、 A主以	b		立上げ簱		フープ筋		立上げ簱		フープ 筋		コーン破壊面	
	(mm)	中柱	側柱	隅柱	/ / AD	中柱	側柱	隅柱	/ / AN	径、ピッチ	有効列数	
PK-850-12C-48	1350	32-D25	32-D25	36-D25	⊞ D16@60	48-D25	52-D25	52-D25	D16@145	D16@300	3	
PK-850-12S-56	1400	32-D29	32-D29	36-D29	⊞ D16@60	48-D29	52-D29	52-D29	D16@85	D16@300	3	
PK-850-12M-64	1550	40-D29	44-D29	48-D29	⊞ D16@70	64-D29	64-D29	68-D29	D16@75	D16@300	4	
PK-850-12L-72	1800	44-D29	48-D29	56-D29	⊞ D16@65	72-D29	76-D29	80-D29	D16@70	D16@100	10	


立上げ筋の端部は、基本的にはフック無しとしています。 注意 ただし、アンカーボルト:12本タイプで、引張側領域で使用する場合は 全てフック有りとします。


- ・柱の類型は、下記の通りとします。
 - ・隅柱: R C 基礎柱型に、基礎梁が直交2方向から取り付く場合
 - ・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合
- 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・N Cベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲げ耐力を採用する場合には引張側領域の値を採用してください。
- ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は)内に示す寸法とします。
- ・鉄筋の材料規格は、D13, D16はSD295、D19, D22, D25はSD345、D29はSD390としています。
 ・フープ 筋およびスタラップ筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします。
 - ・第一スタラップ筋の位置: R C柱型の端部位置
 - ・ スタラップ 筋の基礎梁側端部の位置: 基礎梁の仮想的なコーン状破壊面位置(定着板より45゚の範囲)

PK-850-12 シリーズ





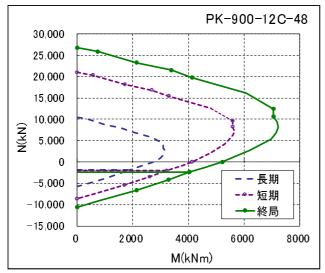
 $\Box -900 \times 900$ アンカーボルト: 12本タイプ

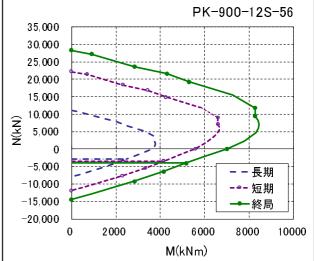
1) NCベース各部の寸法

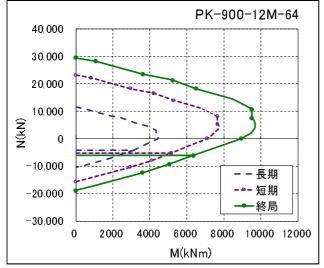
NCベース型式	D	d1	d2	BPL厚	L	t		1*	Нс
NON NELL	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
PK-900-12C-48	1167	1052	838	60	960	25	198	[187]	1160
PK-900-12S-56	1200	1065	826	70	1120	28	218	[207]	1323
PK-900-12M-64	1225	1075	816	75	1280	32	235	[224]	1487
PK-900-12L-72	1245	1085	806	85	1440	36	257	[246]	1646

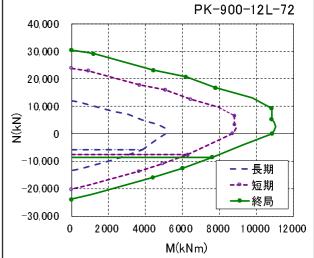
グラウト厚:50mm(55mm:M72の場合*:1は施工時の標準,[]内数値は注入金物無し時

2) RC基礎柱型および基礎梁の詳細設計例

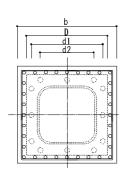

	<u> </u>	エルベンベッ		11 17 1								
					R C柱型	1				基礎梁		
NCベース型式	柱径		圧縮	側領域			引張	則領域		スタラップ。形状	さの補強筋※	
NON X主以	b		立上げ僚		フープ筋		立上げ簱		フープ 筋		コーン破壊面	
	(mm)	中柱	側柱	隅柱	/ / AD	中柱	側柱	隅柱	/ / AN	径、ピッチ	有効列数	
PK-900-12C-48	1400	32-D25	36-D25	36-D25	⊞ D16@65	48-D25	52-D25	52-D25	D16@140	D16@300	3	
PK-900-12S-56	1450	32-D29	36-D29	36-D29	⊞ D16@80	48-D29	52-D29	52-D29	D16@95	D16@300	3	
PK-900-12M-64	1550	40-D29	44-D29	48-D29	⊞ D16@75	64-D29	64-D29	68-D29	D16@80	D16@300	4	
PK-900-12L-72	1800	40-D29	48-D29	56-D29	⊞ D16@70	68-D29	72-D29	80-D29	D16@85	D16@100	11	

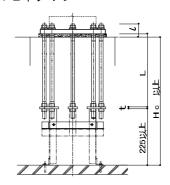

立上げ筋の端部は、基本的にはフック無しとしています。 注意 ただし、アンカーボルト:12本タイプで、引張側領域で使用する場合は 全てフック有りとします。


- ・柱の類型は、下記の通りとします。
 - ・隅柱: R C 基礎柱型に、基礎梁が直交2方向から取り付く場合


 - ・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合
- 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・N Cベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲げ耐力を採用する場合には引張側領域の値を採用してください。
- ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は)内に示す寸法とします。
- ・鉄筋の材料規格は、D13, D16はSD295、D19, D22, D25はSD345、D29はSD390としています。
 ・フープ 筋およびスタラップ筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします
 - ・第一スタラップ筋の位置: R C柱型の端部位置
 - ・ スタラップ 筋の基礎梁側端部の位置: 基礎梁の仮想的なコーン状破壊面位置(定着板より45゚の範囲)

PK-900-12 シリーズ



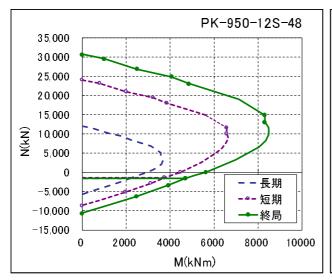


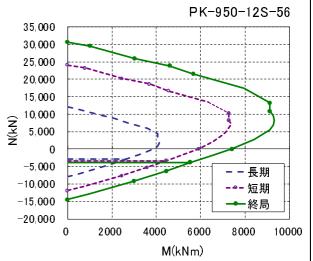
 $\square -950 \times 950$ アンカーボルト: 12本タイプ

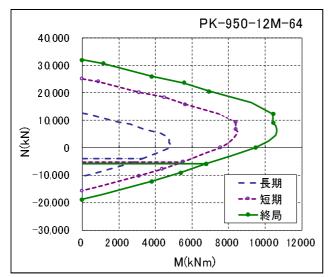
1) NCベース各部の寸法

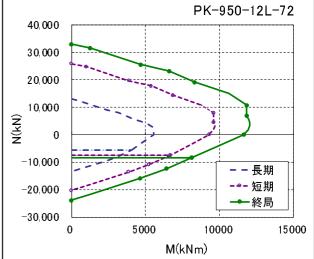
NCベース型式	D	d1	d2	BPL厚	L	t		1*	Нс
NON NELL	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
PK-950-12S-48	1250	1115	876	60	960	25	198	[187]	1160
PK-950-12S-56	1250	1115	876	70	1120	28	218	[207]	1323
PK-950-12M-64	1275	1125	866	75	1280	32	235	[224]	1487
PK-950-12L-72	1295	1135	856	85	1440	36	257	[246]	1646

グラウト厚:50mm(55mm:M72の場合*:1は施工時の標準,[]内数値は注入金物無し時

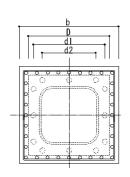

2) RC基礎柱型および基礎梁の詳細設計例

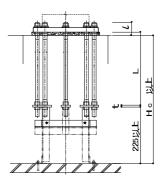

2/八〇圣诞任:	±1350	一生ルイン		1 173							
					RC柱型	1				基	
NC^ ˙-ス型式	柱径		圧縮	則領域			引張	則領域		スタラップ。形状	さの補強筋※
110八 7至八	b		立上げ僚		フープ筋		立上げ僚		フープ 筋		コーン破壊面
	(mm)	中柱	側柱	隅柱	/ / AD	中柱	側柱	隅柱	/ / AN	径、ピッチ	有効列数
PK-950-12S-48	1450	32-D25	36-D25	40-D25	⊞ D16@95	48-D25	52-D25	52-D25	D16@135	D16@300	3
PK-950-12S-56	1500	32-D29	36-D29	36-D29	⊞ D16@75	48-D29	52-D29	52-D29	D16@100	D16@300	3
PK-950-12M-64	1600	40-D29	44-D29	48-D29	⊞ D16@70	64-D29	64-D29	68-D29	D16@85	D16@300	4
PK-950-12L-72	1800	40-D29	48-D29	56-D29	⊞ D16@75	68-D29	72-D29	80-D29	D16@85	D16@100	11


立上げ筋の端部は、基本的にはフック無しとしています。 注意 ただし、アンカーボルト: 12本タイプで、引張側領域で使用する場合は全てフック有りとします。


- ・柱の類型は、下記の通りとします。
 - ・隅柱: R C 基礎柱型に、基礎梁が直交2方向から取り付く場合
 - ・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合
- 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・N Cベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲げ耐力を採用する場合には引張側領域の値を採用してください。
- ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は)内に示す寸法とします。
- ・鉄筋の材料規格は、D13, D16はSD295、D19, D22, D25はSD345、D29はSD390としています。
 ・フープ 筋およびスタラップ筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします。
 - ・第一スタラップ筋の位置: R C柱型の端部位置
 - ・ スタラップ 筋の基礎梁側端部の位置: 基礎梁の仮想的なコーン状破壊面位置(定着板より45゚の範囲)

PK-950-12 シリーズ





付 1 RC基礎柱型および基礎梁の詳細設計例

 $\Box - 1000 \times 1000$ アンカーボルト: 12本タイプ

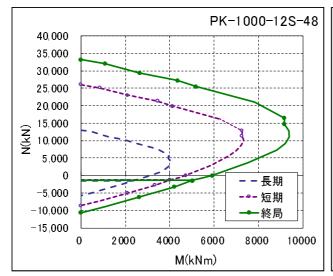
1) N C ベース各部の寸法

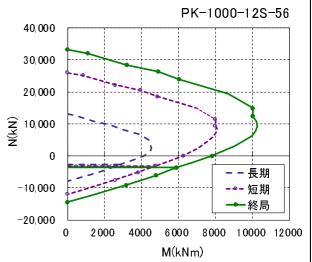
	<u> </u>	11							
NCベース型式	D	d1	d2	BPL厚	L	t		1*	Нс
NCハーA至八	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
PK-1000-12S-48	1300	1165	926	60	960	25	198	[187]	1160
PK-1000-12S-56	1300	1165	926	70	1120	28	218	[207]	1323
PK-1000-12M-64	1325	1175	916	75	1280	32	235	[224]	1487
PK-1000-12L-72	1345	1185	906	85	1440	36	257	[246]	1646

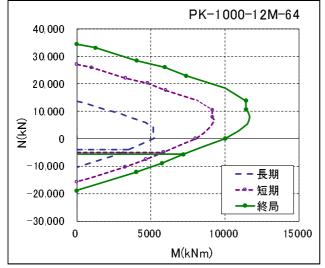
グラウト厚:50mm(55mm:M72の場合*:1は施工時の標準,[]内数値は注入金物無し時

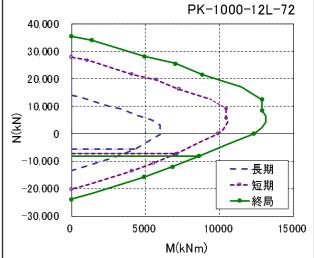
2) RC基礎柱型および基礎梁の詳細設計例

					RC柱型	Ī				基础	
NC^ -z型式	柱径		圧縮	則領域			引張位	則領域		スタラップ。形状	この補強筋※
NO. NELL	b		立上げ筋	I	フープ筋		立上げ筋		フープ筋	本数、	コーン破壊面
	(mm)	中柱	側柱	隅柱	/ / 用刀	中柱	側柱	隅柱	/ / 用刀	径、ピッチ	有効列数
PK-1000-12S-48	1500	32-D25	36-D25	40-D25	Ⅲ D16@85	48-D25	52-D25	52-D25	D16@130	D16@300	3
PK-1000-12S-56	1550	32-D29	36-D29	36-D29	⊞ D16@70	48-D29	52-D29	52-D29	D16@110	D16@300	3
PK-1000-12M-64	1650	40-D29	44-D29	48-D29	⊞ D16@65	64-D29	64-D29	68-D29	⊞ D16@90	D16@300	4
PK-1000-12L-72	1800	36-D29	44-D29	52-D29	⊞ D16@55	68-D29	72-D29	76-D29	D16@75	■ D16@200	6

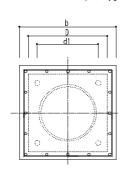

立上げ筋の端部は、基本的にはフック無しとしています。 ただし、アンカーボルト:12本タイプで、引張側領域で使用する場合は 全てフック有りとします。

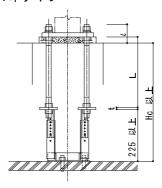

- ・柱の類型は、下記の通りとします。
 - ・隅柱: R C 基礎柱型に、基礎梁が直交2方向から取り付く場合・側柱: R C 基礎柱型に、基礎梁が3方向から取り付く場合


 - ・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合


- 独立柱等、上記の類型以外の場合は、別途ご検討下さい。 ・N Cベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側
- 領域の値を採用し、下側領域の曲げ耐力を採用する場合には引張側領域の値を採用してください。 ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は)内に示す寸法とします。
- ・鉄筋の材料規格は、D13,D16はSD295、D19,D22,D25はSD345、D29はSD390としています。 ・フープ筋およびスタラップ筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします。
 - ・第一スタラップ筋の位置:RC柱型の端部位置
 - ・ スタラップ 筋の基礎梁側端部の位置: 基礎梁の仮想的なコーン状破壊面位置(定着板より45°の範囲)
- 柱径900mm以上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合には、フープ筋量が不足する場合がありますので、別途ご検討下さい。 基礎梁としての必要な大きさ、主筋量およびスタラップ筋量は、別途ご検討下さい。 R C柱型に立上り部がある場合は、別途R C 規準に従って設計してください。

PK-1000-12 シリーズ





 $\phi - 190.7, 200, 216.3 \sim \phi - 300, 318.5$ アンカーボルト: 4 本タイプ

1) NCベース各部の寸法

1/10/		J /A							
NC^ - z型式	D (mm)	d1 (mm)	d2 (mm)	BPL厚 (mm)	L (mm)	t (mm)] (i	L* mm)	Hc (mm)
PC-200-4S-24	300	240	_	32	400	16	136	[125]	591
PC-250-4S-24	350	270	1	28	400	16	132	[121]	591
PC-300-4S-24	394	324	ı	32	400	16	136	[125]	591
PC-300-4S-30	394	324	_	36	450	16	148	[137]	641

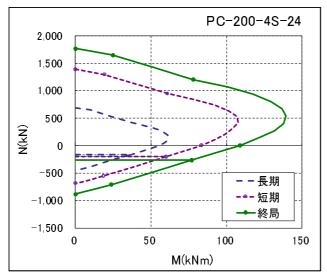
グラウト厚:50mm *:1は施工時の標準,[]内数値は注入金物無し時

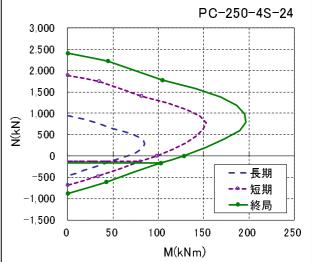
2) RC基礎柱型および基礎梁の詳細設計例

	<u> </u>) — I/C/I/ '		H 1/ J							
					RC柱型					基础	
NCベース型式	柱径		圧縮値	則領域			引張	則領域		スタラップ形状	この補強筋※
NCペーA至八	b		立上げ筋		フープ 筋		立上げ筋		フープ 筋	本数、	コーン破壊面
	(mm)	中柱	側柱	隅柱	ノーノ 月刀	中柱	側柱	隅柱	ノーノ 月刀	径、ピッチ	有効列数
PC-200-4S-24	500	8-D16	8-D16	8-D16	D13@150	8-D16	8-D16	16-D16	D13@150	D13@150	2
PC-250-4S-24	530	8-D16	8-D16	8-D16	D13@150	8-D16	8-D16	16-D16	D13@150	D13@150	2
PC-300-4S-24	600	8-D16	8-D16	8-D16	D13@150	8-D16	8-D16	16-D16	D13@150	D13@125	2
PC-300-4S-30	600	8-D22	8-D22	8-D22	D13@150	8-D22	8-D22	12-D22	D13@150	■ D13@100	2

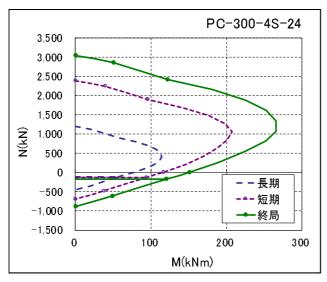
↑ 注意 立上げ筋の端部は、基本的にはフック無しとしています。

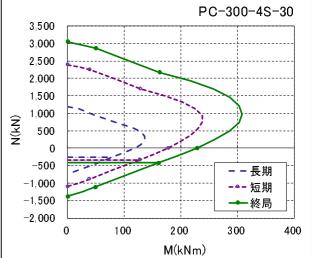
- ## 5

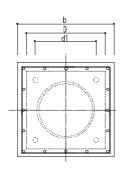

 ・柱の類型は、下記の通りとします。
 ・隅柱:RC基礎柱型に、基礎梁が直交2方向から取り付く場合
 ・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合
 ・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合

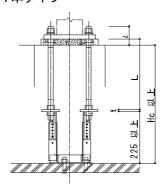

- 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・N C ベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲が耐力を採用する場合には引張側領域の値を採用してください。
 ・柱径 b (mm) は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は
-) 内に示す寸法とします。
- ・鉄筋の材料規格は、D13, D16はSD295、D19, D22, D25はSD345、D29はSD390としています。 ・フープ 筋およびスタラップ筋の頭数字は、複数配筋を示しています。

- ・鉄筋の配置は下記の通りとします。 ・第一スタラップ筋の位置:RC柱型の端部位置
 - ・スタラップ筋の基礎梁側端部の位置:基礎梁の仮想的なコーン状破壊面位置(定着板より45゚の範囲)
- 柱の反曲点高さは、柱径550mm以下は1,500mm、柱径600mm以上は1,800mm、角形鋼管用の ▲ 警告 社径900mm以上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合には、フープ筋量が不足する場合がありますので、別途ご検討下さい。
 ・ △ 警告 基礎梁としての必要な大きさ、主筋量およびスタラップ筋量は、別途ご検討下さい。
 ・ ▲ 警告 RC柱型に立上り部がある場合は、別途RC規準に従って設計してください。


PC-200-4 シリーズ


PC-250-4 シリーズ


PC-300-4 シリーズ



付 1 RC基礎柱型および基礎梁の詳細設計例

 $\phi - 350, 355.6 \sim \phi - 400, 406.4$ アンカーボルト: 4 本タイプ

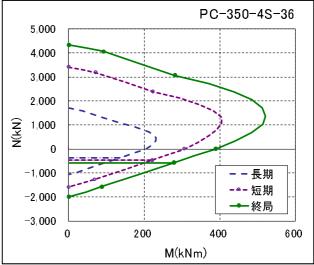
1) NCベース各部の寸法

NCベース型式	D	d1	d2	BPL厚	L	t		l*	Нс
NON A主政	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
PC-350-4S-30	470	380		40	450	16	152	[141]	641
PC-350-4S-36	470	380	-	45	540	19	165	[154]	734
PC-400-4S-36	540	440	-	45	540	19	165	[154]	734
PC-400-4S-42	540	440	1	50	630	22	181	[170]	827

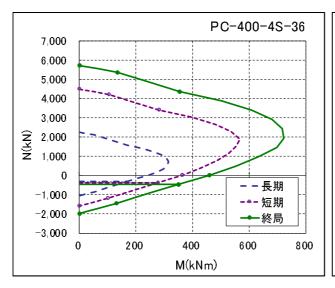
グラウト厚:50mm *:1は施工時の標準,[]内数値は注入金物無し時

2) RC基礎柱型および基礎梁の詳細設計例

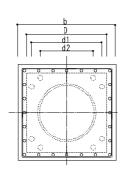
		- 1,0,7,1	* H 1 1 1 1 1 1 2 1	- 1 17 3							
					RC柱型					基础	
NCベース型式	柱径		圧縮値	則領域			引張	則領域		スタラップ。形状	この補強筋※
NC、 A主人	b		立上げ筋	•	フープ 筋		立上げ筋	1	フープ 筋	本数、	コーン破壊面
	(mm)	中柱	側柱	隅柱	/ / 用刀	中柱	側柱	隅柱	/ / 用刀	径、ピッチ	有効列数
PC-350-4S-30	650	8-D22	8-D22	8-D22	D13@150	8-D22	8-D22	12-D22	D13@150	D13@100	3
PC-350-4S-36	700	8-D25	8-D25	8-D25	D13@150	8-D25	8-D25	12-D25	D13@150	□ D13@200	2
PC-400-4S-36	750	8-D25	8-D25	8-D25	D13@150	8-D25	8-D25	12-D25	D13@150	□ D13@125	3
PC-400-4S-42	750	8-D25	12-D25	12-D25	D13@150	12-D25	16-D25	16-D25	D13@100	D13@300	2

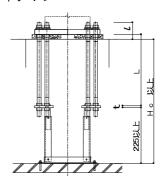

立上げ筋の端部は、基本的にはフック無しとしています。 ↑ 注意

- ・柱の類型は、下記の通りとします。
 - ・隅柱: RC基礎柱型に、基礎梁が直交2方向から取り付く場合
 - ・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合
- 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・NCベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲が耐力を採用する場合には引張側領域の値を採用してください。
- ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は) 内に示す寸法とします。
- ・鉄筋の材料規格は、D13,D16はSD295、D19,D22,D25はSD345、D29はSD390としています。
- ・フープ筋およびスタラップ筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします。
 - ・第一スタラップ筋の位置:RC柱型の端部位置
- ・ スタラップ 筋の基礎梁側端部の位置: 基礎梁の仮想的なコーン状破壊面位置(定着板より45°の範囲)


 _____ 警告 柱の反曲点高さは、柱径550mm以下は1,500mm、柱径600mm以上は1,800mm、角形鋼管用の 社 管台 社の及出版間では、社 怪るが加加が、社 怪のが加加が上は1,800加加が上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合には、フープ筋量が不足する場合がありますので、別途ご検討下さい。
 ・ △ 警告 基礎梁としての必要な大きさ、主筋量およびスタラップ筋量は、別途ご検討下さい。
 ・ ▲ 警告 RC柱型に立上り部がある場合は、別途RC規準に従って設計してください。

PC-350-4 シリーズ




PC-400-4 シリーズ

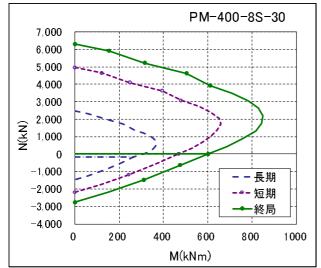
 ϕ - 400, 406. 4 アンカーボルト:8本タイプ

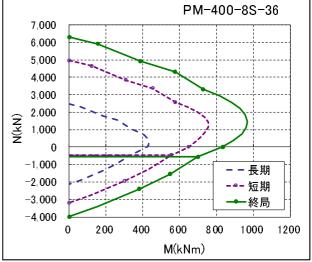
1) N C ベース各部の寸法

	· II III · · ·								
NC^゙ース型式	D	d1	d2	BPL厚	L	t		*	Нс
110ハー/全式	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	1)	nm)	(mm)
PM-400-8S-30	567	462	308	50	600	16	162	[151]	791
PM-400-8S-36	567	462	308	50	720	19	170	[159]	914

グラウト厚:50mm *:1は施工時の標準,[]内数値は注入金物無し時

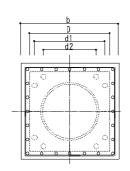
2) R C基礎柱型および基礎梁の詳細設計例


-												
Ī						R C柱型					基础	
	NCベース型式	柱径		圧縮値	則領域			引張	則領域		スタラップ。形状	この補強筋※
	NCハ - A至氏	b	5 支上げ館					立上げ筋	İ	フープ 筋	本数、	コーン破壊面
L		(mm)	中柱 側柱 隅柱			フープ筋	中柱	側柱	隅柱	ノーノ 月力	径、ピッチ	有効列数
I	PM-400-8S-30	750	8-D22	8-D22	12-D22	D13@150	12-D22	16-D22	20-D22	D13@150	D13@100	4
Ī	PM-400-8S-36	750	8-D25 8-D25 16-D25			D13@150	16-D25	16-D25	24-D25	D13@105	D13@100	5


立上げ筋の端部は、基本的にはフック無しとしています。

- ・柱の類型は、下記の通りとします。
 ・隅柱:RC基礎柱型に、基礎梁が直交2方向から取り付く場合・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合

- ・中柱: R C 基礎柱型に、基礎梁が 4 方向から取り付く場合 ・中柱: R C 基礎柱型に、基礎梁が 4 方向から取り付く場合 独立柱等、上記の類型以外の場合は、別途ご検討下さい。 ・N C ベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側 領域の値を採用し、下側領域の曲げ耐力を採用する場合には引張側領域の値を採用してください。 ・柱径 b (mm) は、圧症がはまます。基本的には引張側寸法も同一としますが、異なる場合は
-) 内に示す寸法とします
- ・鉄筋の材料規格は、D13, D16はSD295、D19, D22, D25はSD345、D29はSD390としています。 ・フープ 筋およびスタラップ筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします。
 - ・第一スタラップ筋の位置:RC柱型の端部位置
 - ・ スタラップ 筋の基礎梁側端部の位置: 基礎梁の仮想的なコーン状破壊面位置(定着板より45゚の範囲)
- 村の反曲点高さは、柱径550mm以下は1,500mm、柱径600mm以上は1,800mm、角形鋼管用の柱径900mm以上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合には、フープ筋量が不足する場合がありますので、別途ご検討下さい。基礎梁としての必要な大きさ、主筋量およびスタラップ筋量は、別途ご検討下さい。RC柱型に立上り部がある場合は、別途RC規準に従って設計してください。


PM-400-8 シリーズ

付 1 RC基礎柱型および基礎梁の詳細設計例

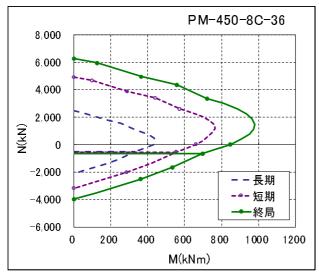
 ϕ - 450, 457. 2 アンカーボルト:8本タイプ

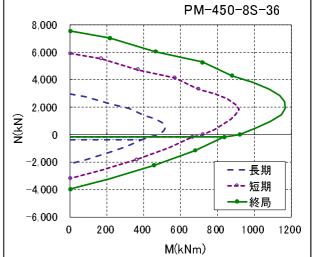
1) N C ベース各部の寸法

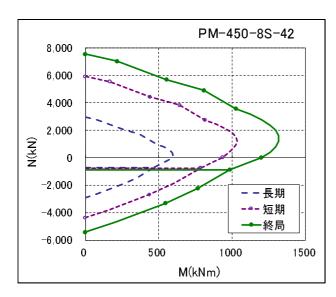
NCベース型式	D	d1	d2	BPL厚	L	t		l*	Не
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(;	mm)	(mm)
PM-450-8C-36	565	480	326	45	720	19	165	[154]	914
PM-450-8S-36	620	498	320	55	720	19	175	[164]	914
PM-450-8S-42	620	498	320	55	840	22	186	[175]	1037

グラウト厚:50mm *:1は施工時の標準,[]内数値は注入金物無し時

2) RC基礎柱型および基礎梁の詳細設計例

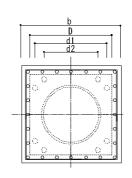

					D O DATE					#*:	林河。
					R C柱型					基1	选梁
NCベース型式	柱径		圧縮側領域				引張	則領域		スタラップ。形状	この補強筋※
NCハ - X至八	b		立上げ筋	1	フープ 筋		立上げ筋	1	フープ 筋	本数、	コーン破壊面
	(mm)	中柱	側柱	隅柱	ノーノ 月刀	中柱	側柱	隅柱	ノーノ 月刀	径、ピッチ	有効列数
PM-450-8C-36	800	8-D25	8-D25	12-D25	D13@150	16-D25	16-D25	24-D25	D13@115	D13@100	5
PM-450-8S-36	800	8-D25	16-D25	16-D25	D13@150	16-D25	16-D25	24-D25	D13@100	D13@150	4
PM-450-8S-42	800	12-D25	12-D25	20-D25	D13@110	24-D25	24-D25	32-D25	D16@100	D13@150	4

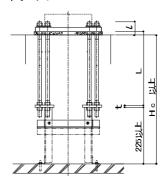

立上げ筋の端部は、基本的にはフック無しとしています。


- ・柱の類型は、下記の通りとします。
 - ・隅柱: RC基礎柱型に、基礎梁が直交2方向から取り付く場合

- ・ 例性: R C 基礎性空に、基礎案が直交2カ同から取り付く場合 ・ 側柱: R C 基礎柱型に、基礎梁が3方向から取り付く場合 ・ 中柱: R C 基礎柱型に、基礎梁が4方向から取り付く場合 独立柱等、上記の類型以外の場合は、別途ご検討下さい。 ・N C ベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側 領域の値を採用し、下側領域の曲げ耐力を採用する場合には引張側領域の値を採用してください。
- ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は ()内に示す寸法とします。・鉄筋の材料規格は、D13,D16はSD295、D19,D22,D25はSD345、D29はSD390としています。
- ・プープ筋およびスタラッフ筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします。
 - ・第一スタラップ筋の位置: R C柱型の端部位置
 - ・ スタラップ 筋の基礎梁側端部の位置: 基礎梁の仮想的なコーン状破壊面位置(定着板より45゚の範囲)
- ・ <u>↑ 警告 柱の反曲点高さは、柱径550mm以下は1,500mm、柱径600mm以上は1,800mm、角形鋼管用の柱径900mm以上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合には、フープ筋量が不足する場合がありますので、別途ご検討下さい。</u>
 ・ <u>↑ 警告 基礎梁としての必要な大きさ、主筋量およびスタラップ筋量は、別途ご検討下さい。</u>
 ・ <u>↑ 警告 R C柱型に立上り部がある場合は、別途R C 規準に従って設計してください。</u>

PM-450-8 シリーズ





付 1 RC基礎柱型および基礎梁の詳細設計例

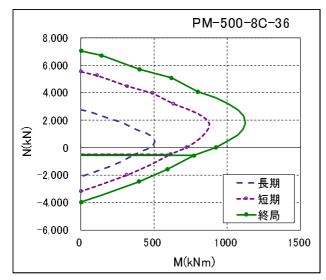
 $\phi - 500.508.4$ アンカーボルト:8本タイプ

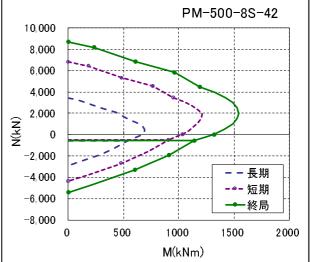
NCベース各部の寸法

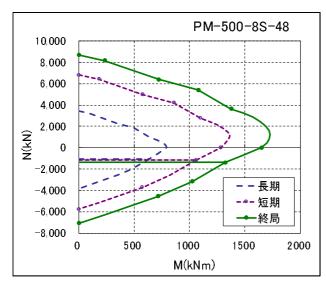
1/110 . /	VIII HIP VO	, ,4							
NCベース型式	D	d1	d2	BPL厚	L	t		1*	Нс
NO. X主人	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(1	mm)	(mm)
PM-500-8C-36	599	514	360	45	720	19	165	[154]	914
PM-500-8S-42	665	550	336	55	840	22	186	[175]	1037
PM-500-8S-48	665	550	336	55	960	25	193	[182]	1160
PM-500-8M-56	710	575	336	65	1120	28	213	[202]	1323

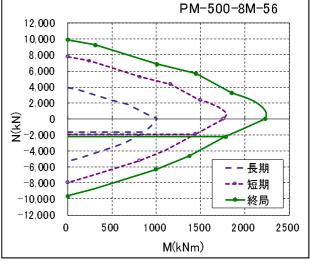
グラウト厚:50mm *:1は施工時の標準, []内数値は注入金物無し時

2) RC其礎柱型および其礎梁の詳細設計例

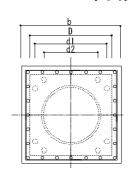

_ Z / R U 基键作	[至のみし	/ 埜 収 未 4	ノ計・和政	ניילו ו ד							
					R C柱型					基础	
NCベース型式	柱径		圧縮	則領域			引張	則領域		スタラップ。形状	この補強筋※
NO. NEX	b		立上げ筋		フープ 筋		立上げ筋		フープ 筋		コーン破壊面
	(mm)	中柱	側柱	隅柱	/ / AD	中柱	側柱	隅柱	/ / AN	径、ピッチ	有効列数
PM-500-8C-36	800	8-D25	12-D25	16-D25	D13@150	16-D25	16-D25	24-D25	D13@100	D13@150	4
PM-500-8S-42	850	12-D25	16-D25	20-D25	D13@95	24-D25	28-D25	32-D25	D16@110	Ⅲ D13@250	3
PM-500-8S-48	900	12-D25	16-D25	20-D25	D16@145	28-D25	32-D25	40-D25	D16@105	D13@125	6
PM-500-8M-56	950	12-D25	16-D25	28-D25	⊞ D16@100	32-D25	36-D25	52-D25	D16@115	m D13@150	6
THE GOO ON GO	(1050)	15 550	10 220	20 220		02 220	00 220	00 000	2100110	2 100100	J

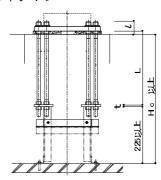

⚠ 注意 立上げ筋の端部は、基本的にはフック無しとしています。


- ・柱の類型は、下記の通りとします。
 - ・隅柱: RC基礎柱型に、基礎梁が直交2方向から取り付く場合


 - ・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合
- 独立柱等、上記の類型以外の場合は、別途ご検討下さい。 ・N C ベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側 領域の値を採用し、下側領域の曲げ耐力を採用する場合には引張側領域の値を採用してください。
- ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は)内に示す寸法とします。
- ・鉄筋の材料規格は、D13, D16はSD295、D19, D22, D25はSD345、D29はSD390としています。 ・フープ 筋およびスタラップ 筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします。
 - ・第一スタラップ筋の位置: R C柱型の端部位置
 - ・ スタラップ 筋の基礎梁側端部の位置: 基礎梁の仮想的なコーン状破壊面位置(定着板より45゚の範囲)
- 柱の反曲点高さは、柱径550mm以下は1,500mm、柱径600mm以上は1,800mm、角形鋼管用の柱径900mm以上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合には、フープ筋量が不足する場合がありますので、別途ご検討下さい。 基礎梁としての必要な大きさ、主筋量およびスタラップ筋量は、別途ご検討下さい。 R C柱型に立上り部がある場合は、別途R C 規準に従って設計してください。

PM-500-8 シリーズ





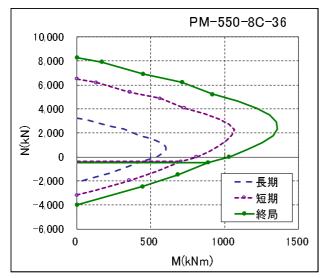
 $\phi - 550.558.8$ アンカーボルト:8本タイプ

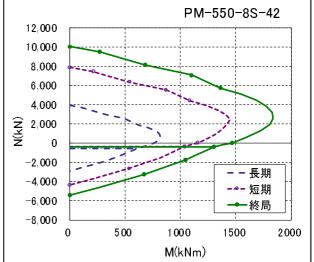
1) N C ベース各部の寸法

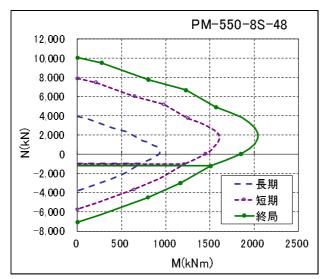
_		·	· /-							
I	NC^゙ース型式	D	d1	d2	BPL厚	L	t		1*	Нс
L	NO、 X主以	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
	PM-550-8C-36	649	564	410	50	720	19	170	[159]	914
	PM-550-8S-42	715	600	386	55	840	22	186	[175]	1037
I	PM-550-8S-48	715	600	386	60	960	25	198	[187]	1160
I	PM-550-8M-56	848	613	374	80	1120	28	228	[217]	1323

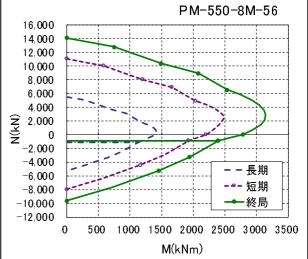
グラウト厚:50mm *:1は施工時の標準, []内数値は注入金物無し時

2) RC基礎柱型および基礎梁の詳細設計例

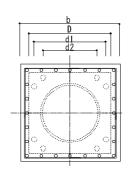

	_ 1/2/1/-		41 1/3							
				R C柱型					基础	
柱径		圧縮値	則領域			引張	則領域		スタラップ。形状	この補強筋※
b		立上げ筋		フーフ。 飳		立上げ筋		フープ。餃		コーン破壊面
(mm)	中柱	側柱	隅柱	/ / 周川	中柱	側柱	隅柱	/ / 用刀	径、ピッチ	有効列数
850	8-D25	12-D25	16-D25	D13@130	16-D25	16-D25	24-D25	D13@110	D13@150	4
900	16-D25	16-D25	20-D25	D13@80	28-D25	28-D25	32-D25	D16@110	■ D13@300	2
950	16-D25	16-D25	24-D25	D16@120	32-D25	32-D25	40-D25	D16@105	D13@150	5
1050	20-D25	24-D25	32-D25	D16@105	40-D25	44-D25	52-D25	D16@77	D13@125	7
	柱径 b (mm) 850 900	柱径 b (mm) 中柱 850 8-D25 900 16-D25 950 16-D25	柱径 圧縮性 上縮性 上縮性 立上げ筋 中柱 側柱 850 8-D25 12-D25 900 16-D25 16-D25 950 16-D25 16-D25	柱径 圧縮側領域 b 立上げ筋 (mm) 中柱 側柱 隅柱 850 8-D25 12-D25 16-D25 900 16-D25 16-D25 20-D25 950 16-D25 16-D25 24-D25	R C柱型 柱径 上海側領域 b 立上げ筋 7-7° 筋 (mm) 中柱 側柱 隅柱 850 8-D25 12-D25 16-D25 D13@130 900 16-D25 16-D25 20-D25 D13@80 950 16-D25 16-D25 24-D25 D16@120	R C柱型 柱径 圧縮側領域 ウェン上げ筋 中柱 側柱 隅柱 中柱 850 8-D25 12-D25 16-D25 D13@130 16-D25 900 16-D25 16-D25 20-D25 D13@80 28-D25 950 16-D25 16-D25 24-D25 D16@120 32-D25	柱径 圧縮側領域 引張 b 立上げ筋 丁一方筋 立上げ筋 (mm) 中柱 側柱 隅柱 中柱 側柱 850 8-D25 12-D25 16-D25 D13@130 16-D25 16-D25 900 16-D25 16-D25 20-D25 D13@80 28-D25 28-D25 950 16-D25 16-D25 24-D25 D16@120 32-D25 32-D25	R C柱型 E箱側領域 月-7*筋 中柱 側柱 隅柱 850 8-D25 12-D25 16-D25 D13@130 16-D25 16-D25 24-D25 900 16-D25 16-D25 20-D25 D13@80 28-D25 28-D25 32-D25 950 16-D25 16-D25 24-D25 D16@120 32-D25 32-D25 40-D25	R C柱型 E 経程	技権 日本 日本 日本 日本 日本 日本 日本 日

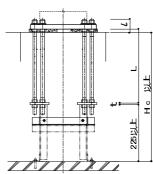

↑ 注意 立上げ筋の端部は、基本的にはフック無しとしています。


- ・柱の類型は、下記の通りとします。
 - ・隅柱: R C 基礎柱型に、基礎梁が直交2方向から取り付く場合


 - ・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合 ・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合
- ・中性: RC基礎性学に、基礎保が4分同から取り行く場合 独立柱等、上記の類型以外の場合は、別途ご検討下さい。 ・NCベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側 領域の値を採用し、下側領域の曲げ耐力を採用する場合には引張側領域の値を採用してください。 ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は ()内に示す寸法とします。
- ・鉄筋の材料規格は、D13, D16はSD295、D19, D22, D25はSD345、D29はSD390としています。
 ・フープ 筋およびスタラップ 筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします。
 - ・第一スタラップ筋の位置:RC柱型の端部位置
 - ・スタラップ筋の基礎梁側端部の位置:基礎梁の仮想的なコーン状破壊面位置(定着板より45°の範囲)
- 市の基礎条例端部の位置: 基礎条の仮志的な3つ状破壊面位置(足有板より45 の範囲) 柱の反曲点高さは、柱径550mm以下は1,500mm、柱径600mm以上は1,800mm、角形鋼管用の 柱径900mm以上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合 には、フープ筋量が不足する場合がありますので、別途ご検討下さい。 基礎梁としての必要な大きさ、主筋量およびスタラップ筋量は、別途ご検討下さい。 R C柱型に立上り部がある場合は、別途R C 規準に従って設計してください。 ▲ 警告

PM-550-8 シリーズ





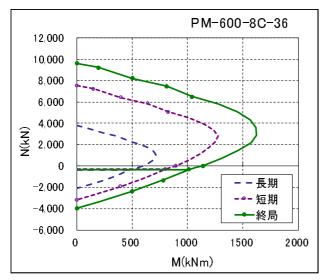
 $\phi - 600.609.6$ アンカーボルト:8本タイプ

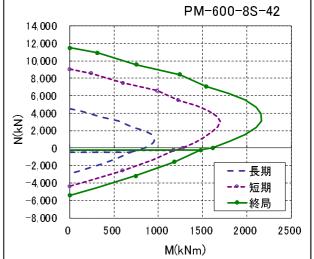
1) N C ベース各部の寸法

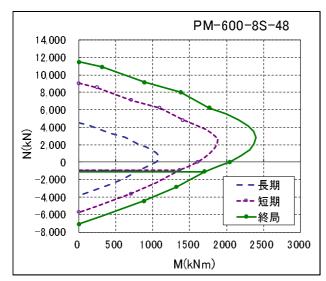
		· II III · · ·								
NCベース彗	ļ.	D	d1	d2	BPL厚	L	t		1*	Нс
NOA NE	= 114	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
PM-600-80	7-36	699	614	460	50	720	19	170	[159]	914
PM-600-8S	-4 2	765	650	436	60	840	22	191	[180]	1037
PM-600-8S	5-48	765	650	436	60	960	25	198	[187]	1160
PM-600-8M	[-64	823	673	414	75	1280	32	235	[224]	1487

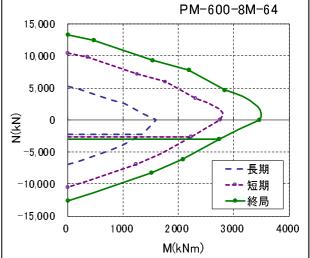
グラウト厚:50mm *:1は施工時の標準,[]内数値は注入金物無し時

2) RC基礎柱型および基礎梁の詳細設計例

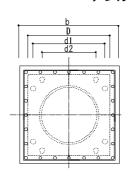

	エエいろし			1 173							
					R C柱型					基础	
NCベース型式	柱径		圧縮	則領域			引張	則領域		スタラップ。形状	この補強筋※
NC、 /主八	b		立上げ筋			立上げ筋		プロナン フープ 筋		本数、	コーン破壊面
	(mm)	中柱	側柱	隅柱	フープ 筋	中柱	側柱	隅柱	/ / 用刀	径、ピッチ	有効列数
PM-600-8C-36	900	12-D25	12-D25	16-D25	D13@141	16-D25	20-D25	24-D25	D13@105	D13@200	3
PM-600-8S-42	950	12-D25	12-D25	20-D25	D13@100	20-D25	24-D25	32-D25	D13@100	D13@125	5
PM-600-8S-48	1000	20-D25	20-D25	24-D25	D16@150	32-D25	36-D25	40-D25	D16@100	D13@300	3
PM-600-8M-64	1100	12-D29	16-D29	32-D29	D16@90	32-D29	36-D29	48-D29	D16@80	□ D13@125	8

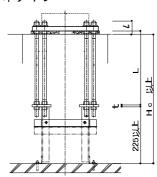

立上げ筋の端部は、基本的にはフック無しとしています。 ▲ 注意


- 備考
 ・柱の類型は、下記の通りとします。
 ・隅柱:RC基礎柱型に、基礎梁が直交2方向から取り付く場合
 ・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合
 ・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合
 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・NCベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲が耐力を採用する場合には引張側領域の値を採用してください。
 ・柱径 b(mm)は、圧縮側がまます。基本的には引張側で法も同一としますが、異なる場合は
-) 内に示す寸法とします。
- ・鉄筋の材料規格は、D13, D16はSD295、D19, D22, D25はSD345、D29はSD390としています。
 ・フープ 筋およびスタラップ 筋の頭数字は、複数配筋を示しています。


- ・鉄筋の配置は下記の通りとします。 ・第一スタラップ筋の位置:RC柱型の端部位置
 - ・スタラップ筋の基礎梁側端部の位置:基礎梁の仮想的なコーン状破壊面位置(定着板より45°の範囲)

PM-600-8 シリーズ





 $\phi - 650.660.4$ アンカーボルト:8本タイプ

1) N C ベース各部の寸法

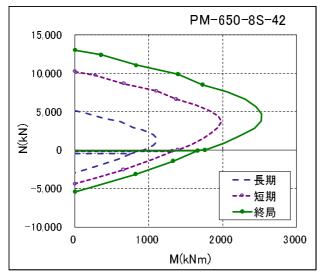
NCベース型式	D	d1	d2	BPL厚	L	t		1*	Нс
NCベース型式	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
PM-650-8S-42	815	700	486	60	840	22	191	[180]	1037
PM-650-8S-48	815	700	486	65	960	25	203	[192]	1160
PM-650-8M-64	913	723	464	80	1280	32	240	[229]	1487

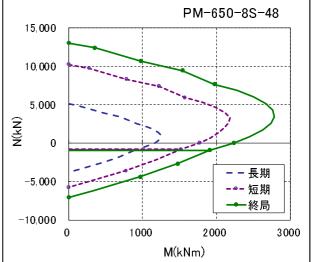
グラウト厚:50mm *:1は施工時の標準,[]内数値は注入金物無し時

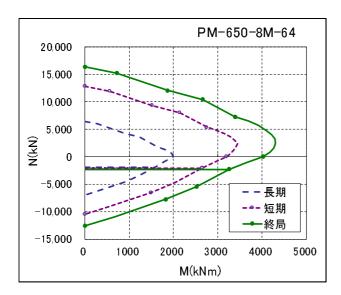
2) RC基礎は刑および基礎梁の詳細設計例

_ Z / K U 圣诞作	エエいみし	が全に木り		נילו וים							
					R C柱型					基征	
NC^ `-ス型式	柱径		圧縮	則領域			引張	則領域		スタラップ。形状	この補強筋※
NCハ - X至八	b		立上げ筋		フープ 筋	立上げ筋			フープ 筋	本数、	コーン破壊面
	(mm)	中柱	側柱	隅柱	禺柱		側柱	隅柱	ノーノ 月刀	径、ピッチ	有効列数
PM-650-8S-42	1000	8-D25	12-D25	24-D25	D13@85	20-D25	24-D25	32-D25	D13@127	D13@100	6
PM-650-8S-48	1050	20-D25	20-D25	28-D25	D16@125	32-D25	36-D25	40-D25	D16@105	D13@300	3
PM-650-8M-64	1150	12-D29	16-D29	32-D29	⊞ D16@75	32-D29	36-D29	48-D29	D16@85	□ D13@150	7

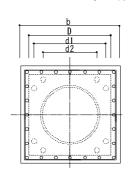
立上げ筋の端部は、基本的にはフック無しとしています。

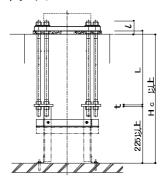

- ・柱の類型は、下記の通りとします。


- ・柱の類型は、下記の通りとします。
 ・隅柱:RC基礎柱型に、基礎梁が直交2方向から取り付く場合
 ・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合
 ・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合
 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・NCベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲げ耐力を採用する場合には引張側領域の値を採用してください。
 ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は()内に示す寸法とします。
 ・鉄筋の材料規格は、D13,D16はSD295、D19,D22,D25はSD345、D29はSD390としています。
 ・3-7 節およびスタラッフ 節の頭数字は、複数配節を示しています。


- ・フープ筋およびスタラップ筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします。

 - ・第一スタラップ筋の位置:R C柱型の端部位置 ・スタラップ筋の基礎梁側端部の位置:基礎梁の仮想的なコーン状破壊面位置(定着板より45°の範囲)
- 柱径900mm以上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合には、フープ筋量が不足する場合がありますので、別途ご検討下さい。 基礎梁としての必要な大きさ、主筋量およびスタラップ筋量は、別途ご検討下さい。 RC柱型に立上り部がある場合は、別途RC規準に従って設計してください。


PM-650-8 シリーズ



 $\phi - 700.711.2$ アンカーボルト:8本タイプ

1) N C ベース各部の寸法

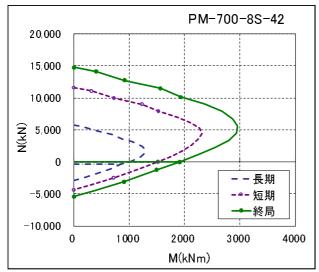
NCベース型式	D	d1	d2	BPL厚	L	t	1*	Нс
10、 7主以	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
PM-700-8S-42	867	752	538	60	840	22	191 [180]	1037
PM-700-8S-48	867	752	538	65	960	25	203 [192]	1160
PM-700-8M-64	1040	739	480	95	1280	32	255 [244]	1487

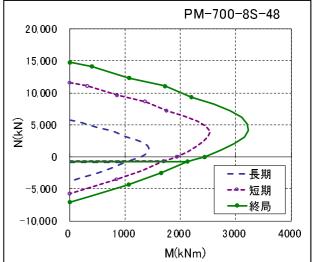
グラウト厚:50mm *:1は施工時の標準,[]内数値は注入金物無し時

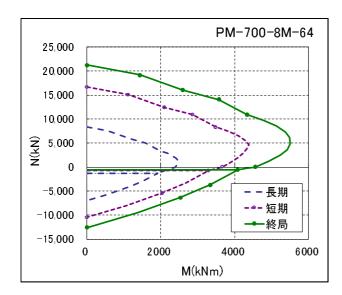
2) RC基礎は刑および基礎梁の詳細設計例

2/八〇圣诞行	エエいみし	か至此末り		נילו וים							
						基征					
NCベース型式	柱径		圧縮	則領域			引張	則領域		スタラップ。形状	この補強筋※
110ハー/全八	b		立上げ筋		フープ 筋		立上げ筋		フープ 筋	本数、	コーン破壊面
	(mm)	中柱	側柱	隅柱	ノーノ 月刀	中柱	側柱	隅柱	ノーノ 月刀	径、ピッチ	有効列数
PM-700-8S-42	1050	16-D25	20-D25	24-D25	D16@115	28-D25	28-D25	32-D25	D16@135	D13@300	2
PM-700-8S-48	1100	20-D25	20-D25	28-D25	D16@105	32-D25	36-D25	40-D25	D16@110	D13@300	3
PM-700-8M-64	1250	20-D29	20-D29	32-D29	⊞ D16@85	40-D29	40-D29	48-D29	D16@70	□ D13@150	7

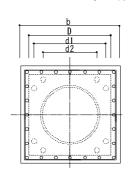
↑ 注意 立上げ筋の端部は、基本的にはフック無しとしています。

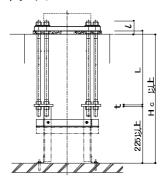

- ・柱の類型は、下記の通りとします。


- ・柱の類型は、下記の通りとします。
 ・隅柱:RC基礎柱型に、基礎梁が直交2方向から取り付く場合
 ・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合
 ・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合
 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・NCベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲げ耐力を採用する場合には引張側領域の値を採用してください。
 ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は()内に示す寸法とします。
 ・鉄筋の材料規格は、D13,D16はSD295、D19,D22,D25はSD345、D29はSD390としています。
 ・3-7 節およびスタラッフ 節の頭数字は、複数配節を示しています。


- ・フープ筋およびスタラップ筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします。

 - ・第一スタラップ筋の位置:R C柱型の端部位置 ・スタラップ筋の基礎梁側端部の位置:基礎梁の仮想的なコーン状破壊面位置(定着板より45°の範囲)
- 柱径900mm以上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合には、フープ筋量が不足する場合がありますので、別途ご検討下さい。 基礎梁としての必要な大きさ、主筋量およびスタラップ筋量は、別途ご検討下さい。 RC柱型に立上り部がある場合は、別途RC規準に従って設計してください。


PM-700-8 シリーズ



 $\phi - 750$ アンカーボルト:8本タイプ

1) N C ベース各部の寸法

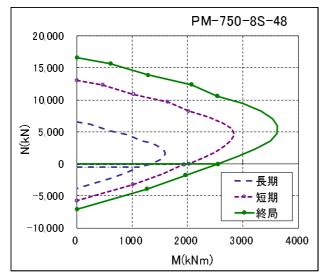
NCベース型式	D	d1	d2	BPL厚	L	t	1*	Нс
NCA -X至氏	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
PM-750-8S-48	920	765	526	65	960	25	203 [192]	1160
PM-750-8S-56	920	765	526	65	1120	28	213 [202]	1323
PM-750-8M-64	1065	775	516	90	1280	32	250 [239]	1487

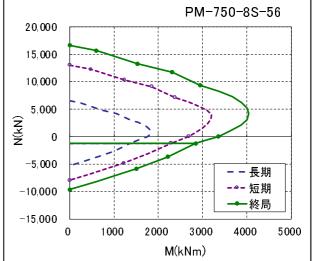
グラウト厚:50mm *:1は施工時の標準,[]内数値は注入金物無し時

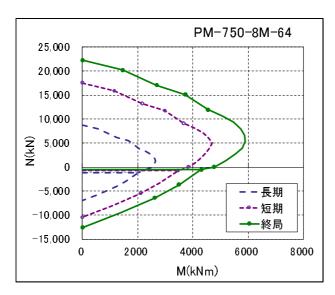
2) RC基礎柱型および基礎梁の詳細設計例

	エエいろし			H 1 173							
					R C柱型					基征	
NCベース型式	柱径		圧縮	則領域			引張	則領域		スタラップ。形状	この補強筋※
NCA 一A至八	b		立上げ筋			立上げ筋		1	フープ 筋	本数、	コーン破壊面
	(mm)	中柱	側柱	隅柱	フープ 筋	中柱	側柱	隅柱	ノーノ 月力	径、ピッチ	有効列数
PM-750-8S-48	1100	20-D25	20-D25	28-D25	D16@85	32-D25	36-D25	40-D25	D16@110	D13@300	3
PM-750-8S-56	1150	20-D25	24-D25	36-D25	D16@80	40-D25	44-D25	52-D25	D16@100	D13@150	6
PM-750-8M-64	1300	20-D29	20-D29 24-D29 32-D29			40-D29	44-D29	48-D29	D16@65	D13@200	5

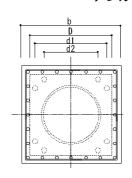
立上げ筋の端部は、基本的にはフック無しとしています。

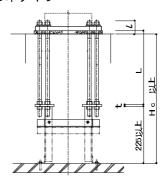

- ・柱の類型は、下記の通りとします。


- ・柱の類型は、下記の通りとします。
 ・隅柱:RC基礎柱型に、基礎梁が直交2方向から取り付く場合
 ・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合
 ・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合
 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・NCベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲げ耐力を採用する場合には引張側領域の値を採用してください。
 ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は()内に示す寸法とします。
 ・鉄筋の材料規格は、D13,D16はSD295、D19,D22,D25はSD345、D29はSD390としています。
 ・3-7 節およびスタラッフ 節の頭数字は、複数配節を示しています。


- ・フープ筋およびスタラップ筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします。

 - ・第一スタラップ筋の位置:R C柱型の端部位置 ・スタラップ筋の基礎梁側端部の位置:基礎梁の仮想的なコーン状破壊面位置(定着板より45°の範囲)
- 柱径900mm以上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合には、フープ筋量が不足する場合がありますので、別途ご検討下さい。 基礎梁としての必要な大きさ、主筋量およびスタラップ筋量は、別途ご検討下さい。 RC柱型に立上り部がある場合は、別途RC規準に従って設計してください。


PM-750-8 シリーズ



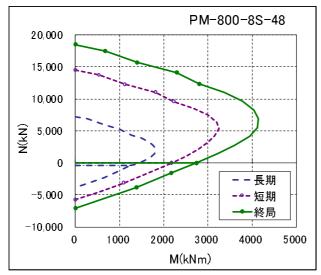
 ϕ -800, 812.8 アンカーボルト:8本タイプ

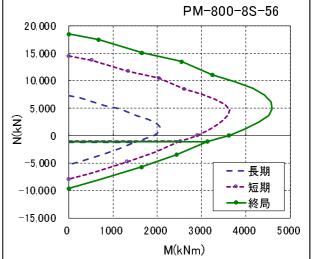
1) N C ベース各部の寸法

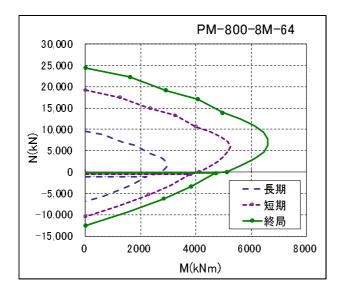
1	. , , , , , ,	• 🗖 Пр • 🤊 .	· /-						
	NCベース型式	D	d1	d2	BPL厚	L	t	1*	Нс
	NON X主具	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
	PM-800-8S-48	970	815	576	65	960	25	203 [192]	1160
	PM-800-8S-56	970	815	576	70	1120	28	218 [207]	1323
	PM-800-8M-64	1115	825	566	95	1280	32	255 [244]	1487

グラウト厚:50mm *:1は施工時の標準,[]内数値は注入金物無し時

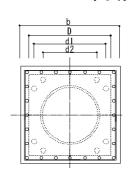
2) R C 基礎柱型および基礎梁の詳細設計例

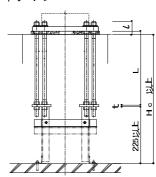

					R C柱型					基础	
NCベース型式	柱径		圧縮	則領域			引張位	則領域		スタラップ。形状	この補強筋※
NCA -X至氏	b	立上げ筋			フープ筋	立上げ筋		•	フープ 筋	本数、	コーン破壊面
	(mm)	中柱	側柱	隅柱	7 7 月刀	中柱	側柱	隅柱	/ / 用刀	径、ピッチ	有効列数
PM-800-8S-48	1150	20-D25	20-D25	32-D25	D16@75	32-D25	36-D25	40-D25	D16@110	D13@300	3
PM-800-8S-56	1200	24-D25	24-D25	36-D25	⊞D16@105	44-D25	48-D25	52-D25	D16@100	□ D13@200	5
PM-800-8M-64	1400	24-D29	24-D29 24-D29 32-D29			44-D29	44-D29	48-D29	D16@70	D13@300	4


↑ 注意 立上げ筋の端部は、基本的にはフック無しとしています。


- ・柱の類型は、下記の通りとします。
 - ・隅柱: RC基礎柱型に、基礎梁が直交2方向から取り付く場合

 - ・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合・中柱:RC基礎柱型に、基礎梁が4方向から取り付く場合
- 独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・N Cベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲げ耐力を採用する場合には引張側領域の値を採用してください。
- ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は)内に示す寸法とします。
- ・鉄筋の材料規格は、D13, D16はSD295、D19, D22, D25はSD345、D29はSD390としています。 ・フープ 筋およびスタラップ 筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします。
 - ・第一スタラップ筋の位置: R C柱型の端部位置
 - ・ スタラップ 筋の基礎梁側端部の位置: 基礎梁の仮想的なコーン状破壊面位置(定着板より45°の範囲)
- 村の反曲点高さは、柱径550mm以下は1,500mm、柱径600mm以上は1,800mm、角形鋼管用の柱径900mm以上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合には、フープ筋量が不足する場合がありますので、別途ご検討下さい。基礎梁としての必要な大きさ、主筋量およびスタラップ筋量は、別途ご検討下さい。R C柱型に立上り部がある場合は、別途R C 規準に従って設計してください。


PM-800-8 シリーズ



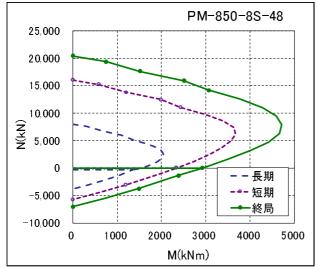
 $\phi - 850$ アンカーボルト:8本タイプ

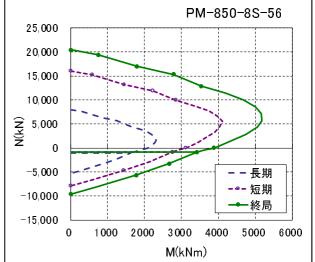
1) NCベース各部の寸法

NO S TUES	D	d1	d2	BPL厚	L	t	1*		Нс
NCベース型式	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)		(mm)
PM-850-8S-48	1020	865	626	70	960	25	208	[197]	1160
PM-850-8S-56	1020	865	626	70	1120	28	218	[207]	1323

グラウト厚:50mm *:1は施工時の標準,[]内数値は注入金物無し時

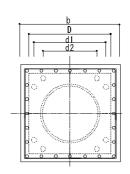
2) R C基礎柱型および基礎梁の詳細設計例

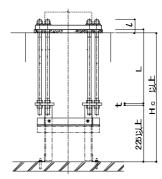

			R C柱型								基礎梁	
	NCベース型式	柱径	圧縮側領域				引張側領域			スタラップ。形状	この補強筋※	
ı	NUN -X至八	b	立上げ筋 ユープ 筋 立上げ筋 フープ 角		フープ 筋	本数、	コーン破壊面					
		(mm)	中柱	側柱	隅柱	ノーノ 月力	中柱	側柱	隅柱	ノーノ 月力	径、ピッチ	有効列数
	PM-850-8S-48	1250	20-D25	24-D25	28-D25	D16@75	32-D25	36-D25	40-D25	D16@115	D13@300	3
ı	PM-850-8S-56	1300	28-D25	28-D25	36-D25	⊞ D16@90	48-D25	48-D25	52-D25	D16@100	D13@300	3


▲ 注意 立上げ筋の端部は、基本的にはフック無しとしています。

- ・柱の類型は、下記の通りとします。 ・隅柱:RC基礎柱型に、基礎梁が直交2方向から取り付く場合 ・側柱:RC基礎柱型に、基礎梁が3方向から取り付く場合

- ・ 特性: R C 基礎性型に、基礎架が 3 万向から取り付く場合・中柱: R C 基礎柱型に、基礎梁が 4 方向から取り付く場合独立柱等、上記の類型以外の場合は、別途ご検討下さい。
 ・N C ベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側領域の値を採用し、下側領域の曲げ耐力を採用する場合には引張側領域の値を採用してください。
 ・ 柱径 b (mm) は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は())内に示す寸法とします。
- ・鉄筋の材料規格は、D13, D16はSD295、D19, D22, D25はSD345、D29はSD390としています。 ・フープ 筋およびスタラップ筋の頭数字は、複数配筋を示しています。
- ・鉄筋の配置は下記の通りとします。
 - ・第一スタラップ筋の位置:RC柱型の端部位置
 - ・スタラップ筋の基礎梁側端部の位置:基礎梁の仮想的なコーン状破壊面位置(定着板より45゚の範囲)
- ▲ 警告


PM-850-8 シリーズ



付 1 RC基礎柱型および基礎梁の詳細設計例

 $\phi - 900.914.4$ アンカーボルト:8本タイプ

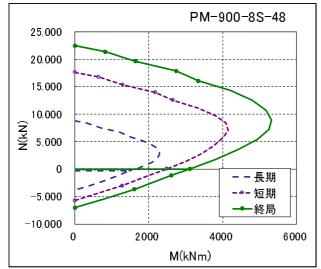
1) N C ベース各部の寸法

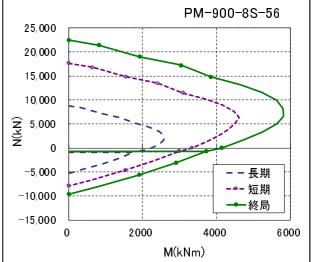
NC^*-z型式	D	d1	d2	BPL厚	L	t	1*	Нс
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
PM-900-8S-48	1070	915	676	70	960	25	208 [197]	1160
PM-900-8S-56	1070	915	676	75	1120	28	223 [212]	1323

グラウト厚:50mm *:1は施工時の標準,「]内数値は注入金物無し時

2) R C基礎柱型および基礎梁の詳細設計例

-	TO THE LETTO OF O THE NEW TOTAL PROPERTY OF THE PROPERTY OF TH											
Ĭ			R C柱型								基礎梁	
	NCベース型式	柱径	圧縮側領域				引張側領域			スタラップ。形状	さの補強筋※	
	NON X主人	b	立上げ筋 フープ 筋 立上げ筋 フープ 筋 chib (milita 1984) フー		フープ 筋	本数、	コーン破壊面					
ı		(mm)	中柱	側柱	隅柱	ノーノ 月刀	中柱	側柱	隅柱	ノーノ 月刀	径、ピッチ	有効列数
I	PM-900-8S-48	1300	24-D25	24-D25	32-D25	⊞ D16@100	32-D25	36-D25	40-D25	D16@110	D13@300	3
ĺ	PM-900-8S-56	1400	28-D25	32-D25	36-D25	⊞ D16@100	48-D25	48-D25	52-D25	D16@110	D13@300	3


↑ 注意 立上げ筋の端部は、基本的にはフック無しとしています。

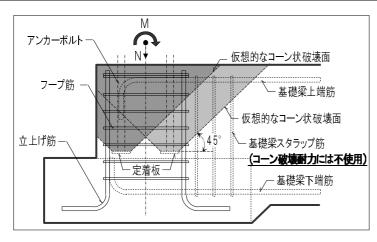

- ・柱の類型は、下記の通りとします。
 - ・隅柱: RC基礎柱型に、基礎梁が直交2方向から取り付く場合
- ・ 関任: R C 基礎住室に、基礎架が直交 2 万向から取り付く場合 ・ 側柱: R C 基礎柱型に、基礎梁が 3 方向から取り付く場合 ・ 中柱: R C 基礎柱型に、基礎梁が 4 方向から取り付く場合 独立柱等、上記の類型以外の場合は、別途ご検討下さい。 ・N C ベース耐力線図(次頁)において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側 領域の値を採用し、下側領域の曲げ耐力を採用する場合には引張側領域の値を採用してください。
- ・柱径 b(mm)は、圧縮側寸法を示します。基本的には引張側寸法も同一としますが、異なる場合は () 内に示す寸法とします。
 ・鉄筋の材料規格は、D13, D16はSD295、D19, D22, D25はSD345、D29はSD390としています。
 ・フープ 筋およびスケップ 筋の頭数字は、複数配筋を示しています。

- ・鉄筋の配置は下記の通りとします。
 - ・第一スタラップ筋の位置:RC柱型の端部位置
- ・スタラップ筋の基礎梁側端部の位置:基礎梁の仮想的なコーン状破壊面位置(定着板より45°の範囲)

 ______警告 柱の反曲点高さは、柱径550mm以下は1,500mm、柱径600mm以上は1,800mm、角形鋼管用の 柱径900mm以上は2,000mmとしています。反曲点高さの設計値がこの数値より小さい場合には、フープ筋量が不足する場合がありますので、別途ご検討下さい。 基礎梁としての必要な大きさ、主筋量およびスタラップ筋量は、別途ご検討下さい。 RC柱型に立上り部がある場合は、別途RC規準に従って設計してください。
- ▲ 警告

PM-900-8 シリーズ

付 1-2 RC基礎柱型の詳細設計例(基礎梁にスタラップ形状の補強筋を入れない場合)


本章では、NCベースPのRC基礎柱型の配筋例、および柱脚の耐力図を示します。

柱脚の耐力算定時のコンクリート設計基準強度は、Fc=21N/mm²としています。

柱型の設計は、設計パトブックの 3.4.1 ii) コーン破壊領域にある鉄筋の付着耐力による場合に準拠し、仮想的なコンクリートのコーン状破壊面内に位置する礎柱の立上げ筋の付着力によりアンカーボルトの定着を確保できるように標準配筋を求めています。基礎梁に入れるスタラップ形状の補強筋は無いものとして計算しています。

設計例においては、以下の定義をしています。(設計ハンドブック 表 3.3.3 15 頁~24 頁参照)

アンカーボルト本数タイプ	圧縮側領域	引張側領域
アンカーホ゛ルト 4 本タイプ゜	2本以下のアンカーボルトが引張状態	2 本超えのアンカーボルトが引張状態
アンカーホ゛ルト8本タイプ゜	4本以下のアンカーボルトが引張状態	4本超えのアンカーボルトが引張状態
アンカーホ゛ルト 12 本タイプ゜	7本以下のアンカーボルトが引張状態	7本超えのアンカーボルトが引張状態

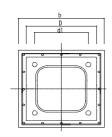
RC基礎柱型および基礎梁

注意 礎柱のせん断力の検定はしていません。骨組解析による柱脚のせん断力により、設計者様が検定して別途フープ筋量をお求め下さい。「NC ベース P 柱脚検定プログラム」で検定可能です。

設計例は、立上り部のない場合を示しています。立上り部がある場合は、ベースプレート下から基礎梁 天端までの曲げモーメントの増大を考慮して、「鉄筋コンクリート構造計算規準・同解説(2010)」(日本建築学会)に従ってご検討下さい。

詳細設計例の使い方

次ページ以降に示す各型式の詳細設計例は、アンカーボルトの引張耐力に相応するだけの柱型立上 筋の鉄筋量を示していますので、このままお使い頂けます。


同様の手法で柱型のサイズ、配筋サイズを変更する場合は、「NC ベース P 柱脚検定プログラム」を ダウンロードしてご検討下さい。

また、存在応力に相応するだけの配筋量に抑えたい場合は、別途、RC規準に従い、柱型サイズ、 配筋量をご検討頂く事も可能です。 こちらも上記検定プログラムでご検討頂けます(青プログラム)。

付1-2 RC基礎柱型の詳細設計例(基礎梁スタラップ形状の補強筋を入れないケース)

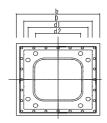
1.角形鋼管柱用

1) アンカーボルト4本タイプ

記号の説明

b : RC柱型の径 D : ベース外径 d1: アンカーホ゛ルト間隔

(注) D、d1の値は前掲表をご参照ください


		RC柱型									
NCベース型式	柱径	圧縮側領域	·	引張側領域							
NUA A型式	b	立上げ筋	フープ筋	立上げ筋	ワープ筋						
	(mm)	中柱 側柱 隅柱	/ / 月刀	中柱 側柱 隅柱	/ / <u>H</u> JJ						
PS-150-4C-24	480	12-D16	D13@150	16-D16	D13@125						
PS-175-4C-24	500	12-D16	D13@150	16-D16	D13@140						
PS-200-4C-24	530	16-D16	D13@150	16-D16	D13@150						
PS-200-4S-27	550	16-D19	D13@150	24-D19	D13@90						
PS-200-4M-30	550	12-D22	D13@150	24-D22	D13@85						
PS-250-4C-24	580	16-D16	D13@150	16-D16	D13@150						
PS-250-4S-27	600	16-D19	D13@150	20-D19	D13@110						
PS-250-4M-30	600	12-D22	D13@120	20-D22	D13@100						
PS-250-4L-36	650	12-D25	D13@150	20-D25	D16@125						
PS-300-4S-27	650	16-D19	D13@150	16-D22	D13@125						
PS-300-4M-30	650	16-D22	D13@150	20-D22	D13@125						
PS-300-4L-36	700	16-D25	D13@150	24-D25	D13@100						
PS-300-4L-42	700	16-D25	D13@150	24-D25	D16@110						
PS-350-4C-30	700	16-D22	D13@150	16-D22	D13@110						
PS-350-4S-36	750	16-D25	D13@150	16-D25	D13@100						
PS-350-4M-42	750	16-D25	D13@150	20-D25	D16@130						
PS-350-4L-48	750	16-D25	D13@150	24-D25	D16@95						
PS-400-4C-30	800	16-D22	D13@150	16-D22	D13@110						
PS-400-4S-36	800	16-D25	D13@150	16-D25	D13@100						
PS-400-4M-42	800	16-D25	D13@150	20-D25	D13@95						
PS-400-4L-48	800	16-D25	D13@150	20-D25	D16@110						
PS-400-4X-56	850	20-D25	D13@140	28-D25	D16@90						

注意 立上げ筋の端部は、基本的にはフック無しとしています。

- ・N C ベース耐力線図において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側 領域の値を採用し、下側領域の曲が耐力を採用する場合には引張側領域の値を採用してください。 ・鉄筋の材料規格は、D13, D16はSD295、D19, D22, D25はSD345、D29はSD390としています。 ・▲ 警告 フープ 筋の配筋量は柱脚のせん断力により別途、個別にご検討ください。
- また、フープ筋のピッチは表の数値より大きくしないで下さい。
- ・ ↑ 警告 R C 柱型に立上り部がある場合は、別途R C 規準に従って設計してください。

付 1-2 RC基礎柱型の詳細設計例(基礎梁スタラップ形状の補強筋を入れないケース)

2) アンカーボルト8本タイプ

記号の説明

b : RC柱型の径 D : ^´-ス外径 d1 : アンカーボルト間隔 1 d2 : アンカーボルト間隔 2

(注) D、d1、d2の値は前掲表をご参照ください

			RC柱型		
NC^゙ース型式	柱径	圧縮側領域		引張側領域	
NO、 X主人	b (mm)	立上げ筋 中柱	フーフ゜筋	立上げ筋 中柱 側柱 隅柱	フープ筋
PK-350-8S-30	750	16-D22	D13@150	24-D22	D16@110
PK-350-8M-36	800	16-D25	D13@150	28-D25	D16@85
PK-350-8M-42	800	20-D25	D16@150	32-D25	D16@60
PK-400-8S-30	800	20-D22	D13@150	20-D22	D16@125
PK-400-8M-36	800	16-D25	D13@150	28-D25	D16@90
PK-400-8L-42	850	20-D25	D13@140	32-D25	D16@70
PK-450-8C-30	850	20-D22	D13@140	24-D22	D16@125
PK-450-8S-36	850	16-D25	D13@140	24-D25	D16@100
PK-450-8M-42	900	20-D25	D13@140	32-D25	D16@80
PK-450-8L-48	950	28-D25	D13@130	40-D25	D16@65
PK-500-8C-30	900	20-D22	D13@140	24-D22	D13@90
PK-500-8C-36	900	20-D25	D13@140	24-D25	D16@100
PK-500-8S-42	950	20-D25	D13@125	32-D25	D16@90
PK-500-8M-48	1000	24-D25	D13@125	40-D25	D16@75
PK-500-8X-56	1050	24-D29	D16@140	40-D29	D16@45
PK-550-8C-36	950	20-D25	D13@130	28-D25	D16@130
PK-550-8S-42	1000	20-D25	D16@150	32-D25	D16@100
PK-550-8M-48	1050	24-D25	D16@150	40-D25	D16@85
PK-550-8X-56	1100	32-D25	D16@150	52-D25	D16@60
PK-550-8WX-64	1250	32-D29	D16@150	48-D29	D16@45
PK-600-8S-42	1050	24-D25	D13@120	32-D25	D16@110
PK-600-8M-48	1100	28-D25	D16@150	40-D25	D16@90
PK-600-8L-56	1100	24-D29	D16@150	36-D29	D16@50
PK-600-8X-64	1200	32-D29	D16@150	_	_
11	1300	32-D29	D16@150	48-D29	D16@50
PK-650-8S-42	1150	24-D25	D16@150	32-D25	D16@125
PK-650-8S-48	1150	28-D25	D16@150	40-D25	D16@95
PK-650-8L-56	1200	36-D25	D16@150	52-D25	D16@75
PK-650-8X-64	1250	36-D29	D16@150	52-D29	D16@50
PK-650-8WX-72	1400	36-D29	D16@140	_	_
11	1500	36-D29	D16@130	68-D29	D16@45
PK-700-8S-42	1200	24-D25	D16@150	32-D25	D16@130
PK-700-8S-48	1200	28-D25	D16@150	40-D25	D16@100
PK-700-8L-56	1200	36-D25	D16@150	52-D25	D16@80
PK-700-8X-64	1300	32-D29	D16@150	48-D29	D16@50
PK-700-8WX-72	1400	36-D29	D16@130	-	J
11	1500	36-D29	D16@130	64-D29	D16@45
PK-750-8S-48	1250	32-D25	D16@150	40-D25	D16@115
PK-750-8S-56	1250	40-D25	D16@150	52-D25	D16@80
PK-750-8M-64	1350	32-D29	D16@140	52-D29	D16@60
PK-750-8L-72	1450	36-D29	D16@115	<u> </u>	_
11	1500	36-D29	D16@100	60-D29	D16@45

PK-800-8S-48	1300	32-D25	D16@150	40-D25	D16@120
PK-800-8S-56	1350	36-D25	D16@140	52-D25	D16@100
PK-800-8M-64	1450	32-D29	D16@130	56-D29	D16@70
PK-800-8L-72	1550	40-D29	D16@125	64-D29	D16@50
PK-850-8C-48	1350	32-D25	D16@140	40-D25	D16@130
PK-850-8S-56	1400	40-D25	D16@140	56-D25	D16@100
PK-850-8M-64	1450	32-D29	D16@120	52-D29	D16@70
PK-850-8L-72	1550	40-D29	D16@125	60-D29	D16@50
PK-900-8C-48	1400	32-D25	D16@120	40-D25	D16@100
PK-900-8S-56	1400	40-D25	D16@140	56-D25	D16@100
PK-900-8M-64	1450	36-D29	D16@130	56-D29	D16@70
PK-900-8L-72	1550	40-D29	D16@125	64-D29	D16@55
Bタイプ					
			RC柱型		
NC^゙ース型式	柱径	圧縮側領域		引張側領域	
NUN A至八	b	立上げ筋	フープ筋	立上げ筋	フープ筋
	(mm)	中柱 側柱 隅柱	/ / HJJ	中柱 側柱 隅柱	/ / HJJ
PK-350-8B-42	800	20-D25	D13@150	32-D25	D16@70
PK-400-8B-42	870	20-D25	D13@140	32-D25	D16@80
PK-450-8B-48	1000	24-D25	D13@125	40-D25	D16@80
PK-500-8B-56	1100	32-D25	D16@150	52-D25	D16@70
PK-550-8B-56	1150	32-D25	D16@150	52-D25	D16@75
PK-600-8B-64	1250	36-D29	D16@150	52-D29	D16@50
PK-650-8B-64	1350	36-D29	D16@140	52-D29	D16@55
PK-700-8B-64	1400	32-D29	D16@140	52-D29	D16@65
PK-750-8B-64	1450	32-D29	D16@130	48-D29	D16@65
PK-800-8B-64	1500	36-D29	D16@130	48-D29	D16@65
DV OFA OD CA	1.5.5.0	9.C D90	D1C@19E	40 D00	D1C@70

立上げ筋の端部は、基本的にはフック無しとしています。 注意

36-D29

36-D29

PK-850-8B-64

PK-900-8B-64

1550

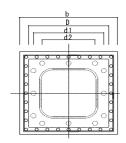
1600

・NCベース耐力線図において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側

D16@125

D16@120

48-D29


48-D29

D16@70

D16@75

- ・ 警告 RC柱型に立上り部がある場合は、別途RC規準に従って設計してください。

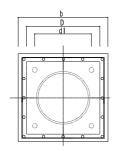
付 1-2 RC基礎柱型の詳細設計例(基礎梁スタラップ形状の補強筋を入れないケース) 3) アンカーボルト12本タイプ

記号の説明

b : RC柱型の径 D : ベース外径 d1 : アンカーホ・ルト間隔 1 d2 : アンカーホ ルト間隔 2

(注) D、d1、d2の値は前掲表をご参照ください

			RC柱型		
NO S - TH-P	柱径	圧縮側領域	,	引張側領域	
NC^゙ース型式	b	立上げ筋	and and a first-	立上げ筋	
	(mm)	中柱 側柱 隅柱	フーフ [°] 筋	中柱 側柱 隅柱	フーフ [°] 筋
PK-700-12S-42	1200	32-D25	D16@100	44-D25	D16@100
PK-700-12S-48	1250	40-D25	D16@90	56-D25	D16@90
PK-700-12L-56	1300	40-D29	D16@70	56-D29	D16@65
PK-700-12X-64	1550	52-D29	D16@50		
"	1650	52-D29	D16@50	72-D29	D16@50
PK-750-12S-48	1250	40-D25	D16@90	56-D25	D16@100
PK-750-12S-56	1300	40-D29	D16@70	56-D29	D16@70
PK-750-12M-64	1500	52-D29	D16@60	1	<u>_</u>
"	1700	52-D29	D16@50	72-D29	D16@50
PK-750-12L-72	1800	64-D29	D16@50	-	
"	2000	68-D29	D16@45	92-D29	D16@45
PK-800-12S-48	1300	44-D25	D16@100	56-D25	D16@100
PK-800-12S-56	1400	44-D29	D16@75	60-D29	D16@65
PK-800-12M-64	1550	52-D29	D16@60		-
"	1700	52-D29	D16@60	72-D29	D16@60
PK-800-12L-72	1800	64-D29	D16@50	1	_
]]	2000	68-D29	D16@50	92-D29	D16@45
PK-850-12C-48	1350	44-D25	D16@100	56-D25	D16@110
PK-850-12S-56	1400	40-D29	D16@75	56-D29	D16@75
PK-850-12M-64	1550	48-D29	D16@60	1	_
"	1700	48-D29	D16@50	72-D29	D16@60
PK-850-12L-72	1800	64-D29	D16@50	1	_
"	2000	68-D29	D16@50	92-D29	D16@50
PK-900-12C-48	1400	44-D25	D16@100	56-D25	D16@120
PK-900-12S-56	1450	48-D29	D16@75	60-D29	D16@90
PK-900-12M-64	1550	48-D29	D16@60	1	_
	1700	48-D29	D16@50	72-D29	D16@70
PK-900-12L-72	1800	64-D29	D16@55		
//	2000	64-D29	D16@50	92-D29	D16@55
PK-950-12S-48	1450	44-D25	D16@110	56-D25	D16@120
PK-950-12S-56	1500	44-D29	D16@80	60-D29 —	D16@100
PK-950-12M-64	1600	48-D29	D16@55		
" PK-950-12L-72	1700	48-D29	D16@50	72-D29	D16@75
PK-950-12L-72	1800 2000	64-D29	D16@55	02 020	
***		64-D29	D16@50	92-D29	D16@55
PK-1000-12S-48	1500	44-D25	D16@110	56-D25	D16@120
PK-1000-12S-56	1550	44-D29	D16@80	64-D29 —	D16@100
PK-1000-12M-64	1650 1700	48-D29 48-D29	D16@55	72-D29	
PK-1000-12L-72	1800	48-D29 64-D29	D16@50 D16@55	12-029	D16@75
/K-1000-12L-72	2000	64-D29	D16@50	92-D29	D16@55
<u>"</u>		トげ筋の端部は 基本的に			บากตาก


1 注意 立上げ筋の端部は、基本的にはフック無しとしています。 ただし、アンカーボルト:12本タイプで、引張側領域で使用する場合は 全てフック有りとします。

- ・NCベース耐力線図において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側 領域の値を採用し、下側領域の曲げ耐力を採用する場合には引張側領域の値を採用してください。
- ・鉄筋の材料規格は、D13, D16はSD295、D19, D22, D25はSD345、D29はSD390としています。
- ・ ↑ 警告 フープ筋の配筋量は柱脚のせん断力により別途、個別にご検討ください。
- また、フープ筋のピッチは表の数値より大きくしないで下さい。 RC柱型に立上り部がある場合は、別途RC規準に従って設計してください。 · **≜** 警告

付1-2 RC基礎柱型の詳細設計例(基礎梁スタラップ形状の補強筋を入れないケース)

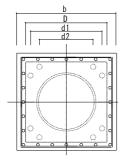
1. 円形鋼管柱用

1) アンカーホルト4本タイプ

記号の説明

b : RC柱型の径 D: ベース外径 d1 : アンカーホ ルト間隔

(注) D、d1の値は前掲表をご参照ください


		RC柱型								
NCベース型式	柱径	圧縮側	湏域	引張側領域						
NU、 A至以	b	立上げ筋		クープ筋	立上げ筋		フーフ゜ 筋			
	(mm)	中柱 側柱	禺柱	/ / 用刀	中柱 側柱	隅柱	/ / 月刀			
PC-200-4S-24	500	12-D16		D13@150	16-D16		D13@140			
PC-250-4S-24	530	16-D16		D13@150	16-D16		D13@150			
PC-300-4S-24	600	16-D16		D13@150	16-D16		D13@150			
PC-300-4S-30	600	16-D22		D13@150	20-D22		D13@100			
PC-350-4S-30	650	16-D22		D13@150	20-D22		D13@130			
PC-350-4S-36	700	16-D25		D13@150	20-D25		D13@100			
PC-400-4S-36	750	16-D25		D13@150	20-D25		D13@100			
PC-400-4S-42	750	16-D25		D13@150	28-D25	•	D13@95			

注意 立上げ筋の端部は、基本的にはフック無しとしています。

- ・NCベース耐力線図において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側 領域の値を採用し、下側領域の曲げ耐力を採用する場合には引張側領域の値を採用してください。 ・鉄筋の材料規格は、D13, D16はSD295、D19, D22, D25はSD345、D29はSD390としています。
- また、フープ筋のピッチは表の数値より大きくしないで下さい。
- RC柱型に立上り部がある場合は、別途RC規準に従って設計してください。 ▲ 警告

付1-2 RC基礎柱型の詳細設計例(基礎梁スタラップ形状の補強筋を入れないケース)

2) アンカーホ・ルト8本タイプ

記号の説明

b : RC柱型の径 : ベース外径 D

d1 : アンカーボルト間隔 1 d2 : アンカーホールト間隔 2

(注) D、d1、d2の値は前掲表をご参照ください

			RC柱型		
NC^゛ース型式	柱径	圧縮側領域		引張側領域	
NO VER	b (mm)	立上げ筋 中柱	フーフ [°] 筋 -	立上げ筋 中柱	フープ筋
PM-400-8S-30	750	16-D22	D13@150	28-D22	D13@75
PM-400-8S-36	750	16-D25	D13@150	28-D25	D13@50
PM-450-8C-36	800	16-D25	D13@150	28-D25	D13@50
PM-450-8S-36	800	16-D25	D13@150	28-D25	D13@55
PM-450-8S-42	800	20-D25	D13@150	36-D25	D16@68
PM-500-8C-36	800	16-D25	D13@150	32-D25	D13@60
PM-500-8S-42	850	20-D25	D16@150	32-D25	D16@7(
PM-500-8S-48	900	24-D25	D16@150	40-D25	D16@60
PM-500-8M-56	950	28-D25	D16@130	— — — — — — — — — — — — — — — — — — —	<u> </u>
<i>II</i>	1100	28-D25	D16@110	52-D25	D16@50
PM-550-8C-36	850	20-D25	D13@140	28-D25	D13@70
PM-550-8S-42	900	24-D25	D16@150	32-D25	D16@80
PM-550-8S-48	950	24-D25	D16@150	40-D25	D16@65
PM-550-8M-56	1050	36-D25	D16@150		<u></u> —
"	1100	36-D25	D16@150	52-D25	D16@50
PM-600-8C-36	900	20-D25	D16@150	32-D25	D16@12
PM-600-8S-42	950	20-D25	D16@150	36-D25	D16@10
PM-600-8S-48	1000	24-D25	D16@150	44-D25	D16@75
PM-600-8M-64	1100	28-D29	D16@150	<u> </u>	—
"	1250	28-D29	D16@150	52-D29	D16@48
PM-650-8S-42	1000	24-D25	D16@150	36-D25	D16@1
PM-650-8S-48	1050	24-D25	D16@150	44-D25	D16@8
PM-650-8M-64	1150	32-D29	D16@150	<u> </u>	—
II.	1300	32-D29	D16@150	52-D29	D16@50
PM-700-8S-42	1050	24-D25	D16@150	36-D25	D16@1
PM-700-8S-48	1100	28-D25	D16@150	40-D25	D16@90
PM-700-8M-64	1250	28-D29	D16@150	<u> </u>	<u> </u>
IJ	1300	28-D29	D16@140	48-D29	D16@5
PM-750-8S-48	1100	28-D25	D16@150	40-D25	D16@9
PM-750-8S-56	1150	36-D25	D16@150	52-D25	D16@6
PM-750-8M-64	1300	32-D29	D16@150	52-D29	D16@5
M-800-8S-48	1150	28-D25	D16@150	40-D25	D16@10
M-800-8S-56	1200	28-D29	D16@150	44-D29	D16@6
PM-800-8M-64	1400	32-D29	D16@140	48-D29	D16@5
M-850-8S-48	1250	28-D25	D16@150	40-D25	D16@1
PM-850-8S-56	1300	36-D25	D16@150	52-D25	D16@8
PM-900-8S-48	1300	32-D25	D16@150	40-D25	D16@1
PM-900-8S-56	1400	36-D25	D16@140	52-D25	D16@8

注意 立上げ筋の端部は、基本的にはフック無しとしています。 1

- ・NCベース耐力線図において、横線の上側領域の曲げ耐力を採用する場合は、表中の圧縮側 領域の値を採用し、下側領域の曲げ耐力を採用する場合には引張側領域の値を採用してください。 ・鉄筋の材料規格は、D13, D16はSD295、D19, D22, D25はSD345、D29はSD390としています。 ・ ▲ 警告 フープ筋の配筋量は柱脚のせん断力により別途、個別にご検討ください。
- また、フープ筋のピッチは表の数値より大きくしないで下さい。
- ・ A 警告 R C 柱型に立上り部がある場合は、別途R C 規準に従って設計してください。

付2 ペースプレートの型式仮定表

中空鋼管柱に対応した、標準的な組合せの型式の表を作成した。 骨組の柱脚応力によっては、変更の必要があります。この表以外の型式も使用です。 「NCベース柱脚検定プログラム」で検定してください。

なお、充填型鋼管コンクリート構造に対しては、充填コンクリート強度およびコンファインド効果考慮の有無によって、充填型鋼管コンクリート柱の耐力が変わるため、「付録編の付1柱脚部の耐力図」を参考に適切なNCベース型式を選定してください。

1) 角形鋼管柱に対するNCベースの型式仮定表 (アンカーホルト 4本タイプ)

(7.7.7) 小 W 十 本 Y	鋼管強度							
鋼管柱	$235\mathrm{N/mm}^2$	$295 \mathrm{N/mm}^2$	$325\mathrm{N/mm}^2$					
□-150x150x 6	·	·	·					
□-150x150x 9	PS-150-4C-24	PS-150-4C-24	PS-150-4C-24					
□-150x150x12								
□-175x175x 6								
□-175x175x 9	PS-175-4C-24	PS-175-4C-24	PS-175-4C-24					
□-175x175x12								
□-200x200x 6								
□-200x200x 8	PS-200-4C-24	PS-200-4C-24	PS-200-4C-24					
□-200x200x 9	r3-200-40-24	r3-200-40-24	r3-200-40-24					
□-200x200x12	1							
□-250x250x 6								
□-250x250x 8	PS-250-4C-24		PS-250-4C-24					
□-250x250x 9	13 230 40 24	PS-250-4C-24	13 230 40 24					
□-250x250x12								
\Box -250x250x14	-		-					
$\Box -250x250x16$	PS-250-4C-24	PS-250-4S-27	PS-250-4S-27					
□-300x300x 6	PS-300-4S-27							
□-300x300x 8	-	PS-300-4S-27	PS-300-4S-27					
□-300x300x 9	PS-300-4S-27	13 300 43 21	13 300 43 21					
□-300x300x12	13 300 43 21							
□-300x300x14	-		-					
□-300x300x16	PS-300-4S-27	PS-300-4M-30	PS-300-4M-30					
□-300x300x19	PS-300-4M-30	10 000 1, 00	10 000 IM 00					
□-300x300x22	10 000 IM 00		PS-300-4L-36					
□-350x350x 9	PS-350-4C-30		PS-350-4C-30					
□-350x350x12	10 000 10 00	PS-350-4C-30	10 000 10 00					
□-350x350x14	_		_					
□-350x350x16	PS-350-4C-30	PS-350-4S-36	PS-350-4S-36					
□-350x350x19	PS-350-4S-36	10 000 10 00	10 000 10 00					
□-350x350x22	10 000 10 00	PS-350-4M-42	PS-350-4M-42					
□-350x350x25	PS-350-4M-42	10 000 IM 12	10 000 1 _M 12					
□-400x400x 9	PS-400-4C-30		PS-400-4C-30					
$\Box -400x400x12$	10 100 10 00	PS-400-4C-30	10 100 10 00					
$\Box -400 \times 400 \times 14$	_		_					
$\Box -400 \times 400 \times 16$	PS-400-4C-30	PS-400-4S-36	PS-400-4S-36					
$\Box -400 \times 400 \times 19$	PS-400-4S-36	PS-400-4M-42	PS-400-4M-42					
□-400x400x22	12 100 10 00		10 100 Im 10					
□-400x400x25	PS-400-4M-42	PS-400-4L-48						
$\Box -400x400x28$		=	PS-400-4L-48					
$\Box -400x400x32$	PS-400-4L-48							

(注1) - は材質に対応する柱断面サイズ(板厚)がありません。

2) 角形鋼管柱に対するNCペースの型式仮定表 (アンカーボルト 8本タイプ)

(アクカーホルト 8本91	鋼管強度								
鋼管柱 	$235\mathrm{N/mm}^2$	$295\mathrm{N/mm}^2$	$325 \mathrm{N/mm}^2$	$365 \mathrm{N/mm}^2$	$385\mathrm{N/mm}^2$				
□-350x350x 9				PK-350-8S-30					
□-350x350x12				1 K 000 00 00					
□-350x350x14				-					
□-350x350x16	PK-350-8S-30	PK-350-8S-30	PK-350-8S-30	PK-350-8S-30	=				
□-350x350x19				PK-350-8M-36					
□-350x350x22				TR 550 OM 50					
□-350x350x25				=					
□-400x400x 9	PK-400-8S-30		PK-400-8S-30	PK-400-8S-30					
□-400x400x12	1 K 100 05 50		1 K 100 00 00	1 K 100 00 00	=				
□-400x400x14	-		-	-					
□-400x400x16		PK-400-8S-30		PK-400-8S-30					
□-400x400x19			PK-400-8S-30	PK-400-8M-36	PK-400-8M-36				
□-400x400x22	PK-400-8S-30			PK-400-8L-42	PK-400-8L-42				
□-400x400x25			PK-400-8M-36		1 K 400 GL 42				
□-400x400x28		PK-400-8M-36	1 K 400 OM 50	-	*PK-400-8L-42				
□-400x400x32	PK-400-8M-36	-	PK-400-8L-42		*1 K 400 GL 42				
□-450x450x 9	PK-450-8C-30		PK-450-8C-30	-					
□-450x450x12	1 K 450 60 50		1 K 450 60 50	PK-450-8C-30	_				
□-450x450x14	-		-	-					
□-450x450x16		PK-450-8C-30		PK-450-8C-30					
□-450x450x19			PK-450-8C-30	PK-450-8S-36	PK-450-8S-36				
□-450x450x22	PK-450-8C-30			PK-450-8M-42	PK-450-8M-42				
□-450x450x25			PK-450-8S-36		1 K 450 OW 42				
□-450x450x28		PK-450-8S-36	FK 450 65 50	_	PK-450-8L-48				
□-450x450x32	PK-450-8S-36	_	PK-450-8M-42		1 K 450 OL 40				
□-500x500x12				PK-500-8C-30					
□-500x500x14		PK-500-8C-30	PK-500-8C-30	-	=				
□-500x500x16	PK-500-8C-30	1 K 300 60 30	1 K 500 60 50	PK-500-8C-36					
□-500x500x19] IK 300 8C 30			PK-500-8S-42	PK-500-8S-42				
□-500x500x22			PK-500-8C-36	TR 500 65 42	1 K 300 65 42				
□-500x500x25		PK-500-8C-36	1 W 200 00 20		PK-500-8M-48				
□-500x500x28	PK-500-8C-36		PK-500-8S-42		1 K 900 OW 40				
□-500x500x32	1 K 500 60 50		1 K 500 05 42	-	PK-500-8X-56				
□-500x500x36	PK-500-8S-42	_	PK-500-8M-48		1 K 900 OX 90				
□-500x500x40	PK-500-8M-48		PK-500-8X-56		-				
□-550x550x12		_		_	_				
□-550x550x16]		PK-550-8C-36	PK-550-8C-36					
□-550x550x19	PK-550-8C-36	PK-550-8C-36	11 000 00 00	PK-550-8S-42	PK-550-8S-42				
□-550x550x22	11. 555 55 50	11. 000 00 00		PK-550-8M-48	PK-550-8M-48				
□-550x550x25			PK-550-8S-42		11 000 OM 10				
□-550x550x28		PK-550-8S-42	11. 000 00 12		PK-550-8X-56				
□-550x550x32	PK-550-8S-42		PK-550-8M-48	-	11 000 0A 00				
□-550x550x36		-			PK-550-8WX-64				
$\Box -550 x 550 x 40$	PK-550-8M-48		PK-550-8X-56		IN OOU OWA OT				

2) 角形鋼管柱に対するNCペースの型式仮定表 (アンカーボルト 8本タイプ)

(アンカーホルト 8本タイ	鋼管強度							
鋼管柱	$235\mathrm{N/mm}^2$	325N/mm ²	$385\mathrm{N/mm}^2$					
\Box -600x600x12 • 16	233N/ IIIII	323N/ IIIII	2021/ 11111					
\Box -600x600x12 * 16			PK-600-8S-42					
\Box -600x600x13		PK-600-8S-42	PK-600-8M-48					
\Box -600x600x22 × 23	PK-600-8S-42		TR GGG GW 10					
			PK-600-8L-56					
□-600x600x32		PK-600-8M-48						
□-600x600x36	PK-600-8M-48	PK-600-8L-56	PK-600-8X-64					
☐-600x600x40	FK-000-0M-40	FK-000-8L-50	_					
\Box -650x650x12 • 16 \Box -650x650x19 • 22		PK-650-8S-42	PK-650-8S-48					
	PK-650-8S-42	1 K 050 05 42	1 K 030 03 40					
$\Box -650 \times 650 \times 25$	FR 000 05 42		PK-650-8L-56					
\Box -650x650x28		PK-650-8S-48	PK-650-8X-64					
□-650x650x32 • 36			1 K 050 6X 04					
$\Box -650 \times 650 \times 38$	PK-650-8S-48	PK-650-8L-56	DV CEO OWY 79					
\Box -650x650x40			PK-650-8WX-72 -					
□-700x700x12 • 16		PK-700-8S-42	- PK-700-8S-48					
\Box -700x700x19 • 22	PK-700-8S-42		PK-700-8S-48 PK-700-8L-56					
$\Box -700 \times 700 \times 25 \cdot 28$		PK-700-8S-48						
$\Box -700 \times 700 \times 32$			PK-700-8X-64					
$\Box -700 \times 700 \times 36$	PK-700-8S-48	PK-700-8L-56	PK-700-8WX-72					
$\Box -700 \times 700 \times 38$	FK-700-65-46	FK-100-8L-90	- DV 700 OWV 79					
$\Box -700 \times 700 \times 40$			PK-700-8WX-72					
$\Box -750 \times 750 \times 12 \cdot 16$			DV 750 0C 40					
$\Box -750 \times 750 \times 19$		PK-750-8S-48	PK-750-8S-48					
$\Box -750 \times 750 \times 22 \cdot 25$	DV 750 OC 40		PK-750-8L-56					
$\Box -750 \times 750 \times 28$	PK-750-8S-48		PK-750-8M-64					
$\Box -750 \times 750 \times 32$		PK-750-8S-56	PK-750-8L-72					
$\Box -750 \times 750 \times 36$		LV-190-99-90	PK-150-8L-12					
$\Box -750 \times 750 \times 38$	DV 7EA OC EC	DV 750 OM 64	DV 750 OL 79					
$\Box -750 \times 750 \times 40$	PK-750-8S-56	PK-750-8M-64	PK-750-8L-72					
□-800x800x16		PK-800-8S-48	PK-800-8S-48					
□-800x800x19	PK-800-8S-48	FR 600 65 46	PK-800-8L-56					
\square -800x800x22 • 25 \square -800x800x28 • 32			PK-800-8M-64					
		PK-800-8S-56	PK-800-8L-72					
□-800x800x36 □-800x800x38	PK-800-8S-56		- IN 600 GL 12					
□-800x800x38	1 K 000 05 50	PK-800-8M-64	PK-800-8L-72					
\Box -850x850x46			- IN 600 6L 12					
\Box -850x850x10 \Box -850x850x19 • 22		PK-850-8C-48	PK-850-8L-56					
$\Box = 850 \times 850 \times 19 = 22$	PK-850-8C-48	1 K 000 00 10	l					
\Box 830x830x23		PK-850-8S-56	PK-850-8M-64					
\Box -850x850x28 • 32		11. 000 00 00	PK-850-8L-72					
\Box -850x850x30	PK-850-8S-56	PK-850-8M-64	- IN 050 OL 12					
\Box 850x850x38	1 K 000 00 00	TR COO OM OT	PK-850-8L-72					
\Box -900x900x16			IN OOU OL 12					
$\Box -900 \times 900 \times 10$		PK-900-8C-48	PK-900-8S-56					
$\Box -900 \times 900 \times 19^{-5} \times 22$	PK-900-8C-48	11. 200 00 10						
$\Box -900 \times 900 \times 28$	11. 200 00 10		PK-900-8M-64					
$\Box -900 \times 900 \times 32$		PK-900-8S-56						
$\Box -900 \times 900 \times 32$			PK-900-8L-72					
□-900x900x38	PK-900-8S-56	PK-900-8M-64	_					
$\Box -900 \times 900 \times 40$	11. 200 00 00	I I JOO OM OF	PK-900-8L-72					
		l .	1 N JOO OL 14					

⁽注1) - は材質に対応する柱断面f(x)(板厚)がありません。

⁽注2)*付は対応可能ですが、ベス耐力が不足することが多い。

3) 角形鋼管柱に対するNCベースの型式仮定表 (アンカーボルト 12本タイプ)

(アンカーホールト 12本)	}17 		
鋼管柱	$235\mathrm{N/mm}^2$	325N/mm^2	$385 \mathrm{N/mm}^2$
$\Box -700x700x12$			_
□-700x700x16			
$\Box -700 x 700 x 19$		PK-700-12S-42	PK-700-12S-42
$\Box -700 \times 700 \times 22$	PK-700-12S-42	111 100 120 12	
$\Box -700 \times 700 \times 25$			PK-700-12S-48
$\Box -700x700x28$			PK-700-12S-56
$\Box -700 \times 700 \times 32$		PK-700-12S-48	DV 500 40V 04
$\Box -700x700x36$			PK-700-12X-64
$\Box -700x700x38$	PK-700-12S-48	PK-700-12L-56	- -
$\Box -700 \times 700 \times 40$			PK-700-12X-64
$\Box -750 \times 750 \times 12$			_
$\Box -750 \times 750 \times 16$			
$\Box -750 \times 750 \times 19$			PK-750-12S-48
$\Box -750 \times 750 \times 22$		PK-750-12S-48	FR 750 125 46
$\Box -750 \times 750 \times 25$	PK-750-12S-48		
$\Box -750 \times 750 \times 28$			PK-750-12S-56
\Box -750x750x32 \Box -750x750x36			PK-750-12M-64
\Box 750x750x36			- IN 150 12M 04
\Box -750x750x40		PK-750-12S-56	PK-750-12L-72
□-800x800x16			-
□-800x800x19			
□-800x800x22			PK-800-12S-48
□-800x800x25		PK-800-12S-48	
□-800x800x28	PK-800-12S-48		DV 000 100 FC
□-800x800x32			PK-800-12S-56
□-800x800x36			PK-800-12M-64
□-800x800x38		PK-800-12S-56	_
□-800x800x40		1 N OUU 123 00	PK-800-12L-72
$\Box -850x850x16$			_
$\Box -850x850x19$			PK-850-12C-48
$\Box -850x850x22$	PK-850-12C-48	PK-850-12C-48	
$\Box -850x850x25$	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PK-850-12S-56
$\Box -850x850x28$			
$\Box -850x850x32$			PK-850-12M-64
$\Box -850x850x36$	DI 050 100 5	PK-850-12S-56	PK-850-12L-72
$\Box -850x850x38$	PK-850-12S-56	PK-850-12M-64	
$\Box -850x850x40$			PK-850-12L-72

3) 角形鋼管柱に対するNCベースの型式仮定表 (アンカーボルト 12本タイプ)

鋼管柱	鋼管強度							
到門目 作工	$235\mathrm{N/mm}^2$	$325\mathrm{N/mm}^2$	$385\mathrm{N/mm}^2$					
□-900x900x16			_					
□-900x900x19			PK-900-12C-48					
□-900x900x22		PK-900-12C-48	1 K 300 120 10					
□-900x900x25	PK-900-12C-48	1 N 300 120 10	PK-900-12S-56					
□-900x900x28								
□-900x900x32			PK-900-12M-64					
□-900x900x36		PK-900-12S-56	PK-900-12L-72					
□-900x900x38	PK-900-12S-56	PK-900-12M-64	_					
$\Box -900 \times 900 \times 40$			PK-900-12L-72					
$\Box -950x950x16$			_					
$\Box -950x950x19$								
$\Box -950 \times 950 \times 22$		PK-950-12S-48	PK-950-12C-48					
$\Box -950 \times 950 \times 25$	PK-950-12S-48		PK-950-12S-56					
$\Box -950x950x28$								
$\Box -950 \times 950 \times 32$		PK-950-12S-56	PK-950-12M-64					
$\Box -950x950x36$			PK-950-12L-72					
$\Box -950x950x38$	PK-950-12S-56	PK-950-12M-64						
$\Box -950 \times 950 \times 40$			PK-950-12L-72					
$\Box -1000 \times 1000 \times 16$			_					
□-1000x1000x19	-	DIZ 1000 100 40	DV 1000 100 40					
□-1000x1000x22	PK-1000-12S-48	PK-1000-12S-48	PK-1000-12S-48					
$\Box -1000 \times 1000 \times 25$	rn-1000-125-48		PK-1000-12S-56					
□-1000x1000x28	-		DV 1000 19M C4					
□-1000x1000x32	1	PK-1000-12S-56	PK-1000-12M-64					
$\Box -1000 \times 1000 \times 36$		FW-1000-179-90	PK-1000-12L-72					
$\Box -1000 \times 1000 \times 38$	PK-1000-12S-56	DV 1000 19M 64	PK-1000-12L-72					
$\Box -1000 x 1000 x 40$		PK-1000-12M-64	FK-1000-12L-72					

(注1) - は材質に対応する柱断面サイズ(板厚)がありません。

4) 円形鋼管柱に対するNCベースの型式仮定表 (アンカーボルト 4本タイプ)

(アンカーホルト 4本ダイ	イン) 鋼管強度							
鋼管柱	到明日 235N/mm ²							
, 100 7 4 F	235N/mm	$325\mathrm{N/mm}^2$						
φ-190. 7x 4. 5	PC-200-4S-24	PC-200-4S-24						
φ-190. 7x 6	FC 200 45 24	FC 200 45 24						
φ-190. 7x 8								
φ-216. 3x 6	PC-200-4S-24	PC-200-4S-24						
φ-216. 3x 8								
ϕ -267. 4x 6	DO 050 40 04	DO 050 4C 04						
φ-267. 4x 8	PC-250-4S-24	PC-250-4S-24						
φ-267. 4x 9								
φ-300x 9	DG 000 4G 04	PC-300-4S-24						
$\phi - 300 \times 12$	PC-300-4S-24	D						
φ-300x15		PC-300-4S-30						
φ-318. 5x 6	DG 000 4G 04	DG 000 4G 04						
φ-318. 5x 8	PC-300-4S-24	PC-300-4S-24						
φ-318. 5x 9								
$\phi - 350x 9$		DG 050 4G 00						
$\phi - 350 \times 12$	PC-350-4S-30	PC-350-4S-30						
$\phi - 350 \times 15$		DO 050 40 00						
$\phi - 350 \times 18$		PC-350-4S-36						
φ-355. 6x 6								
φ-355.6x 8	PC-350-4S-30	PC-350-4S-30						
φ-355.6x 9								
φ-355. 6x12								
φ-400x 9		DG 400 4G 0G						
$\phi - 400 \times 12$	DG 400 4G 0G	PC-400-4S-36						
$\phi - 400 \times 16$	PC-400-4S-36							
$\phi - 400 \times 19$		DG 400 4G 40						
$\phi - 400 \times 22$		PC-400-4S-42						
$\phi - 400 \times 25$	DG 400 4G 40							
$\phi - 400 \times 28$	PC-400-4S-42	-						
φ-400x30								
φ-406. 4x 9								
ϕ -406. 4x12	DO 400 4C 02	PC-400-4S-36						
ϕ -406. 4x14	PC-400-4S-36							
φ-406. 4x16								
ϕ -406. 4x19		PC-400-4S-42						

(注1) - は材質に対応する柱断面サイズ(板厚)がありません。

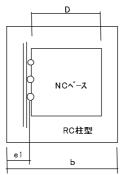
5) 円形鋼管柱に対するNCベースの型式仮定表 (アンカーボルト 8本タイプ)

(アンカーホルト 8本タ	177 ■ 鋼管強度								
鋼管柱	$235\mathrm{N/mm}^{2}$	325N/mm ²	355N/mm ²	$385\mathrm{N/mm}^2$					
φ-400x 9									
φ-400x12	.		-	_					
φ-400x16									
$\phi - 400 x 19$	PM-400-8S-30	PM-400-8S-30		PM-400-8S-30					
$\phi - 400 \text{x} 22$			PM-400-8S-30	PM-400-8S-36					
$\phi - 400 \times 25$.								
φ-400x28		TN 400 00 00	PM-400-8S-36	*PM-400-8S-36					
φ-400x32		PM-400-8S-36	*PM-400-8S-36						
$\phi - 406.4x9$	<u>.</u>								
ϕ -406. 4x12	DW 400 OC 20	DM 400 0C 20	=	=					
$\phi - 406.4 \times 14$	PM-400-8S-30	PM-400-8S-30							
$\phi - 406.4 \times 16$			PM-400-8S-30	DM 400 OC 20					
$\phi = 406.4 \times 19$			rM-400-85-30	PM-400-8S-30					
$\phi - 450 \times 9$	-		_	_					
$\phi - 450 \times 12$ $\phi - 450 \times 16$	-	PM-450-8C-36							
$\phi = 450 \times 10$ $\phi = 450 \times 19$		IM 450 6C 50	PM-450-8C-36	PM-450-8S-36					
$\phi = 450 \times 19$ $\phi = 450 \times 22$	 			IM 400 03 00					
$\phi = 450 \times 25$			- PM-450-8S-36	PM-450-8S-42					
$\phi = 450 \times 25$ $\phi = 450 \times 28$	·	PM-450-8S-36							
$\phi = 450 \times 32$			- PM-450-8S-42	*PM-450-8S-42					
$\phi - 450 \times 36$	- PM-450-8S-36	PM-450-8S-42	*PM-450-8S-42						
ϕ -457. 2x 9			1.11 100 00 12						
$\phi - 457.2 \times 12$]								
ϕ -457. 2x14	PM-450-8C-36	PM-450-8C-36	_	_					
φ-457. 2x16	1								
ϕ -457. 2x19	1		PM-450-8C-36	PM-450-8S-36					
$\phi - 500x 9$									
$\phi = 500 \times 12$]		-	_					
φ-500x16]	PM-500-8C-36							
φ-500x19	PM-500-8C-36		PM-500-8C-36	PM-500-8S-42					
$\phi = 500 \times 22$				1 WI JUU OS 42					
φ-500x25	_]		PM-500-8S-42	PM-500-8S-48					
φ-500x28		PM-500-8S-42		1 WL 500 05 40					
φ-500x32	PM-500-8S-42		PM-500-8S-48	PM-500-8M-56					
φ-500x36	1 M 000 00 42	PM-500-8S-48	PM-500-8M-56	*PM-500-8M-56					
φ-508x 9	.]								
$\phi = 508 \times 12$.		_	=					
$\phi - 508 x 14$	PM-500-8C-36	PM-500-8C-36							
φ-508x16									
$\phi - 508 \times 19$.		PM-500-8C-36	PM-500-8S-42					
$\phi = 508 \times 22$			PM-500-8S-42						

5) 円形鋼管柱に対するNCベースの型式仮定表 (アンカーボルト 8本タイプ)

(「ノハーホルト 0本31	鋼管強度							
	$235\mathrm{N/mm}^{2}$	325N/mm^2	$355\mathrm{N/mm}^2$	$385\mathrm{N/mm}^2$				
φ-550x 9								
$\phi - 550 \times 12$			-	=				
$\phi - 550 \times 16$		PM-550-8C-36						
$\phi - 550 \times 19$	PM-550-8C-36		PM-550-8C-36	PM-550-8S-42				
$\phi - 550 \times 22$				1M 330 63 42				
φ-550x25			PM-550-8S-42	PM-550-8S-48				
φ-550x28		PM-550-8S-42						
φ-550x32	PM-550-8S-42		PM-550-8S-48	PM-550-8M-56				
φ-550x36	IM 550 65 42	PM-550-8S-48	PM-550-8M-56					
φ-558.8x 9								
ϕ -558. 8x12								
φ-558. 8x14	PM-550-8C-36	PM-550-8C-36	_	_				
φ-558. 8x16	- LW 220 9C 20	LW 220 OC 20						
φ-558. 8x19]		PM-550-8C-36	PM-550-8S-42				
ϕ -558. 8x22			PM-550-8S-42	rM 000-05-42				
φ-600x 9								
φ-600x12			-	-				
φ-600x16		PM-600-8C-36						
φ-600x19	PM-600-8C-36		PM-600-8C-36	PM-600-8S-42				
φ-600x22	1			PM-000-05-42				
$\phi - 600 \times 25$	1		PM-600-8S-42	PM-600-8S-48				
φ-600x28	1	PM-600-8S-42		PM-600-8M-64				
φ-600x32	PM-600-8S-42		PM-600-8S-48	1 M 000 0M 04				
φ-600x36	PM-000-05-42	PM-600-8S-48	PM-600-8M-64	*PM-600-8M-64				
φ-609. 6x 9								
φ-609. 6x12			_	_				
φ-609. 6x14	PM-600-8C-36	PM-600-8C-36	_	_				
φ-609. 6x16	PM-000-00-30	FW-000-00-30						
φ-609. 6x19			PM-600-8C-36	PM-600-8S-42				
φ-609. 6x22			PM-600-8S-42	PM-000-05-42				
$\phi - 650 \times 12$			_	_				
φ-650x16								
φ-650x19		DM_650_9S_49		PM-650-8S-42				
φ-650x22	PM-650-8S-42	PM-650-8S-42	PM-650-8S-42	PM-650-8S-48				
φ-650x25	rM 000-05-44			rw 000-05-40				
φ-650x28]		PM-650-8S-48					
φ-650x32		PM-650-8S-48	PM-650-8M-64	PM-650-8M-64				
φ-650x36		PM-650-8M-64	1 W 030 OW 04					
φ-650x40	PM-650-8S-48	1 M 000 0M-04	*PM-650-8M-64	*PM-650-8M-64				
ϕ -660. 4x12								
φ-660. 4x14]		_	_				
φ-660. 4x16	PM-650-8S-42	PM-650-8S-42						
φ-660. 4x19			DM-650-99-49	PM-650-8S-42				
φ-660. 4x22			PM-650-8S-42	PM-650-8S-48				

5) 円形鋼管柱に対するNCベースの型式仮定表 (アンカーボルト 8本タイプ)


(アノハーホルト 0本ツ1	鋼管強度							
鋼管柱 ————————————————————————————————————	$235\mathrm{N/mm}^2$	325N/mm^2	$355\mathrm{N/mm}^2$	$385\mathrm{N/mm}^2$				
$\phi - 700 \times 12 \cdot 16$			-	-				
$\phi - 700 \times 19$		DV 500 00 40	DV 500 00 40	PM-700-8S-42				
φ-700x22	DM 700 0C 49	PM-700-8S-42	PM-700-8S-42	PM-700-8S-48				
$\frac{\phi - 700 \times 25}{\phi - 700 \times 28}$	PM-700-8S-42							
$\frac{\phi - 700 \times 28}{\phi - 700 \times 32}$	•		PM-700-8S-48					
$\phi - 700 \times 36$	1	PM-700-8S-48	PM-700-8M-64	PM-700-8M-64				
$\phi - 700 \times 40$	PM-700-8S-48	PM-700-8M-64	*PM-700-8M-64	1				
ϕ -711. 2x12 • 14 • 16			-	-				
ϕ -711. 2x19	PM-700-8S-42	PM-700-8S-42	PM-700-8S-42	PM-700-8S-42				
ϕ -711. 2x22			1M 700 05 42	PM-700-8S-48				
$\phi - 750 \times 16$				_				
$\phi - 750 \times 19$				PM-750-8S-48				
$\phi - 750 \times 22$		PM-750-8S-48	PM-750-8S-48					
$\begin{array}{c} \phi - 750 \times 25 \\ \phi - 750 \times 28 \end{array}$	PM-750-8S-48			PM-750-8S-56				
$\frac{\phi}{\phi} = 750 \times 32$	•							
$\phi = 750 \times 36$	1		PM-750-8S-56	PM-750-8M-64				
$\phi - 750 \times 40$	1	PM-750-8S-56	PM-750-8M-64	1				
$\phi - 800 \times 16$			-	-				
φ-800x19	PM-800-8S-48			PM-800-8S-48				
$\phi = 800 \times 22$		PM-800-8S-48	PM-800-8S-48	1 M 000 05 40				
φ-800x25		1 M 000 05 10		PM-800-8S-56				
$\phi - 800 \times 28$	-							
$\phi - 800 \times 32$		PM-800-8S-56	PM-800-8S-56	PM-800-8M-64				
$\phi - 800 \times 36$ $\phi - 812.8 \times 12 \cdot 14 \cdot 16$		FM-000-02-00	_	_				
ϕ -812. 8x19	PM-800-8S-48	PM-800-8S-48						
$\phi - 812.8 \times 22$	1 000 00 10		PM-800-8S-48	PM-800-8S-48				
$\phi - 850 \times 16$			_	-				
φ-850x19]			PM-850-8S-48				
$\phi = 850 \times 22$		PM-850-8S-48	PM-850-8S-48	1 M 000 05 40				
$\phi - 850 \times 25$	PM-850-8S-48			PM-850-8S-56				
$\phi - 850 \times 28$			PM-850-8S-56					
$\phi - 850 \times 32$		PM-850-8S-56	*PM-850-8S-56	*PM-850-8S-56				
$\phi - 850 \times 36$ $\phi - 900 \times 16$			*FM-000-02-00	_				
$\frac{\phi}{\phi} = 900 \times 10$	1			PM-900-8S-48				
$\phi = 900 \times 13$	1	PM-900-8S-48	PM-900-8S-48	111 000 00 10				
$\phi - 900 \times 25$	PM-900-8S-48			PM-900-8S-56				
$\phi - 900 \times 28$]		PM-900-8S-56	<u> </u>				
φ-900x32]	PM-900-8S-56	l	*PM-900-8S-56				
φ-900x36		1 M 300 00 00	*PM-900-8S-56	-1 M 500 00 00				
ϕ -914. 4x14 • 16								
$\phi - 914.4 \times 19$	PM-900-8S-48	PM-900-8S-48	DM 000 00 40	PM-900-8S-48				
$\phi - 914.4 \times 22$	-		PM-900-8S-48	PM-900-8S-56				
φ-914. 4x25	<u> </u>		<u> </u>					

⁽注1) - は材質に対応する柱断面サイズ(板厚)がありません。 (注2)*付は対応可能ですが、ベース耐力が不足することが多い。

付3 A 注意 R C 基礎柱型の最小幅の計算例

- 1. 本文 「3.4.2 柱型部の評定上の設計条件」における、下記の条件を満たすRC柱型の最小径を表の b1に示します。
 - ① RC柱型の幅 b は、ベースプレートの幅 D の1.15倍以上を確保すること。
 - ② ベースプレート縁は、柱型の立上り筋の芯より内側に入るようにする。

本条件は評定上の遵守事項のため、これより小さくすることは出来ません。

- 2. 付録1の「RC基礎柱型および基礎梁の詳細設計例」の配筋条件(径、本数)で納まりを考慮した場合のRC柱型の最小径をb2(圧縮領域)、b3(引張領域)に示します。 また、詳細設計例の柱径をbに示します。
- 3. 付録1の「RC基礎柱型および基礎梁の詳細設計例」はコーン破壊領域にある立上り筋の付着耐力・他を計算し、アンカーボルトの全引張力以上になるように設計しています。 (赤プログラム)
- 4. 鉄筋コンクリート柱(礎柱)として「鉄筋コンクリート構造計算規準・同解説」に準拠して「柱脚の応力」を基に 設計する場合(青プログラム)は「詳細設計例」より鉄筋量を減らし、柱径を小さく出来るケースもあります。 その場合は青プログラムで耐力等を確認して下さい。

(但し、1. の最小径 b 1を下回ることは出来ません。)

・詳細設計例の外径を採用いただくことを推奨いたします。

警告! ・詳細設計例の外径を変更する場合は、

設計者様で耐力、立上り筋最小ピッチ、配筋納まり等をご検討ください。

角形鋼管:アンカーボルト4本タイプ

(単位:mm)

	ベース	1	立上り	鉄筋	フープ筋	e 1	②立上筋		RC柱型外径			
NCベース型式	外径		鉄筋径	最外径	最外径		ベース外径	評定上	圧縮領域	引張領域	詳細	
	D	Dx1. 15	d t	d b	df	50+df	De	最小径	最小径	最小径	設計例	
						+db/2	(D+2*e1)	b 1	b 2	b 3	b	
PS-150-4C-24	276	3 17	16	18	14	73.0	422	430	430	430	480	
PS-175-4C-24	300	3 45	16	18	14	73.0	446	450	450	450	500	
PS-200-4C-24	326	375	16	18	14	73.0	472	480	480	480	530	
PS-200-4S-27	340	391	19	21	14	74.5	489	490	490	490	550	
PS-200-4M-30	344	396	22	25	14	76.5	497	500	500	500	550	
PS-250-4C-24	386	444	16	18	14	73.0	532	540	540	5 40	580	
PS-250-4S-27	390	449	19	21	14	74.5	539	540	540	540	600	
PS-250-4M-30	394	453	22	25	14	76.5	547	550	550	550	600	
PS-250-4L-36	415	477	25	28	14	78.0	571	580	580	580	650	
PS-300-4S-27	440	506	19	21	14	74.5	589	590	590	590	650	
PS-300-4M-30	444	511	22	25	14	76.5	597	600	600	600	650	
PS-300-4L-36	500	575	25	28	14	78.0	656	660	660	660	700	
PS-300-4L-42	500	575	25	28	14	78.0	656	660	660	660	700	
PS-350-4C-30	494	568	22	28	14	78.0	650	650	650	650	700	
PS-350-4S-36	515	592	25	28	14	78.0	671	680	680	680	750	
PS-350-4M-42	540	621	25	28	14	78.0	696	700	700	700	750	
PS-350-4L-48	565	650	25	28	14	78.0	721	730	730	730	750	
PS-400-4C-30	546	628	25	28	14	78.0	702	710	710	7 10	800	
PS-400-4S-36	567	652	25	28	14	78.0	723	730	730	730	800	
PS-400-4M-42	592	681	25	28	14	78.0	748	750	750	750	800	
PS-400-4L-48	617	7 10	25	28	14	78.0	773	780	780	780	800	
PS-400-4X-56	649	7 46	25	28	14	78.0	805	810	810	850	850	

角形鋼管:アンカーボルト8本タイプ

	ベース	(1)	立上り	鉄筋	フープ 筋	e 1	②立上筋		RC柱型外径			
NCベース型式	外径	_	鉄筋径	最外径	最外径		ベース外径	評定上	圧縮領域	引張領域	詳細	
	D	Dx1. 15	d t	d b	df	50+df	De	最小径	最小径	最小径	設計例	
						+db/2	(D+2*e1)	b 1	b 2	b 3	b	
PK-350-8S-30	522	600	22	25	14	76.5	675	680	680	680	750	
PK-350-8M-36	574	660	25	28	14	78.0	730	730	730	730	800	
PK-350-8M-42	574	660	25	28	14	78.0	730	730	730	770	800	
PK-400-8S-30	574	660	22	25	14	76.5	727	730	730	730	800	
PK-400-8M-36	599	689	25	28	14	78.0	755	760	760	760	800	
PK-400-8L-42	626	720	25	28	14	78.0	782	790	790	790	850	
PK-450-8C-30	624	7 18	22	25	14	76.5	777	780	780	780	850	
PK-450-8S-36	649	7 46	25	28	14	78.0	805	810	810	8 10	850	
PK-450-8M-42	676	777	25	28	14	78.0	832	840	840	840	900	
PK-450-8L-48	715	822	25	28	18	82.0	879	880	880	920	950	
PK-500-8C-30	699	804	22	25	14	76.5	852	860	860	860	900	
PK-500-8C-36	699	804	25	28	14	78.0	855	860	860	860	900	
PK-500-8S-42	726	835	25	28	14	78.0	882	890	890	930	950	
PK-500-8M-48	765	880	25	28	18	82.0	929	930	930	970	1000	
PK-500-8X-56	800	920	25	28	18	82.0	964	970	970	1050	1050	
PK-550-8C-36	749	861	25	28	14	78.0	905	910	910	910	950	
PK-550-8S-42	776	892	25	28	14	78.0	932	940	940	940	1000	
PK-550-8M-48	815	937	25	28	18	82.0	979	980	980	1020	1050	
PK-550-8X-56	850	978	25	28	18	82.0	1014	1020	1020	1050	1100	
PK-550-8WX-64	875	1006	29	33	18	84.5	1044	1050	1050	1090	1200	
PK-600-8S-42	828	952	25	28	14	78.0	984	990	990	990	1050	
PK-600-8M-48	867	997	25	28	18	82.0	1031	1040	1040	1040	1100	
PK-600-8L-56	900	1035	25	28	18	82.0	1064	1070	1070	1100	1100	
PK-600-8X-64	925	1064	29	33	18	84.5	1094	1100	1100	1200	1200	
PK-650-8S-42	917	1055	25	28	14	78.0	1073	1080	1080	1080	1150	
PK-650-8S-48	917	1055	25	28	18	82.0	1081	1090	1090	1090	1150	
PK-650-8L-56	950	1093	25	28	18	82.0	1114	1120	1120	1120	1200	
PK-650-8X-64	980	1127	29	33	18	84.5	1149	1150	1150	1190	1250	
PK-650-8WX-72	1000	1150	29	33	18	84.5	1169	1170	1170	1400	1400	
PK-700-8S-42	967	1112	25	28	14	78.0	1123	1130	1130	1130	1200	
PK-700-8S-48	967	1112	25	28	18	82.0	1131	1140	1140	1140	1200	
PK-700-8L-56	1000	1150	25	28	18	82.0	1164	1170	1170	1200	1200	
PK-700-8X-64	1030	1185	29	33	18	84.5	1199	1200	1200	1240	1300	
PK-700-8WX-72	1050	1208	29	33	18	84.5	1219	1220	1220	1400	1400	
PK-750-8S-48	1050	1208	25	28	18	82.0	1214	1220	1220	1220	1250	
PK-750-8S-56	1050	1208	25	28	18	82.0	1214	1220	1220	1220	1250	
PK-750-8M-64	1075	1236	29	33	18	84.5	1244	1250	1250	1290	1350	
PK-750-8L-72	1095	1259	29	33	18	84.5	1264	1270	1270	1450	1450	
PK-800-8S-48	1100	1265	25	28	18	82.0	1264	1270	1270	1270	1300	
PK-800-8S-56	1100	1265	25	28	18	82.0	1264	1270	1270	1270	1350	
PK-800-8M-64	1125	1294	29	33	18	84.5	1294	1300	1300	1340	1450	
PK-800-8L-72	1145	13 17	29	33	18	84.5	1314	1320	1320	1450	1550	
PK-850-8C-48	1117	1285	25	28	18	82.0	1281	1290	1290	1290	1350	
PK-850-8S-56	1150	1323	25	28	18	82.0	1314	1330	1330	1350	1400	
PK-850-8M-64	1175	1351	29	33	18	84.5	1344	1360	1360	1360	1450	
PK-850-8L-72	1195	1374	29	33	18	84.5	1364	1380	1380	1500	1550	
PK-900-8C-48	1167	13 42	25	28	18	82.0	1331	1350	1350	1350	1400	
PK-900-8S-56	1200	1380	25	28	18	82.0	1364	1380	1380	1400	1400	
PK-900-8M-64	1225	1409	29	33	18	84.5	1394	1410	1410	1410	1450	
PK-900-8L-72	1245	1432	29	33	18	84.5	1414	1440	1440	1550	1550	

角形鋼管:アンカーボルト8本 Bタイプ

(単位 mm)

	ベース	1)	立上り	鉄筋	フープ。筋	e 1	②立上筋		RC柱型外径			
NCベース型式	外径		鉄筋径	最外径	最外径		ベース外径	評定上	圧縮領域	引張領域	詳細	
	D	Dx1. 15	d t	d b	df	50+df	De	最小径	最小径	最小径	設計例	
						+db/2	(D+2*e1)	b 1	b 2	b 3	b	
PK-350-8B-42	640	736	25	28	14	78.0	796	800	800	800	800	
PK-400-8B-42	710	8 17	25	28	14	78.0	866	870	870	870	870	
PK-450-8B-48	760	874	25	28	18	82.0	924	930	930	950	1000	
PK-500-8B-56	885	10 18	25	28	18	82.0	1049	1050	1050	1100	1100	
PK-550-8B-56	935	1075	25	28	18	82.0	1099	1100	1100	1150	1150	
PK-600-8B-64	1040	1196	29	33	18	84.5	1209	1210	1210	1250	1250	
PK-650-8B-64	1090	1254	29	33	18	84.5	1259	1260	1260	1350	1350	
PK-700-8B-64	1140	1311	29	33	18	84.5	1309	1320	1320	1400	1400	
PK-750-8B-64	1190	1369	29	33	18	84.5	1359	1370	1370	1450	1450	
PK-800-8B-64	1250	1438	29	33	18	84.5	1419	1450	1450	1500	1500	
PK-850-8B-64	1300	1495	29	33	18	84.5	1469	1500	1500	1550	1550	
PK-900-8B-64	1350	1553	29	33	18	84.5	1519	1560	1560	1600	1600	

角形鋼管:アンカーボルト12本タイプ

(単位:mm)

	ベース	1	立上り	鉄筋	フープ 筋	e 1	②立上筋		RC柱型	型外径	
NCベース型式	外径		鉄筋径	最外径	最外径		ベース外径	評定上	圧縮領域	引張領域	詳細
	D	Dx1. 15	d t	d b	df	50+df	De	最小径	最小径	最小径	設計例
						+db/2	(D+2*e1)	b 1	b 2	b 3	b
PK-700-12S-42	967	1112	25	28	18	82.0	1131	1130	1130	1150	1200
PK-700-12S-48	967	1112	25	28	18	82.0	1131	1140	1140	1170	1250
PK-700-12L-56	1000	1150	29	33	18	84.5	1169	1170	1170	1260	1300
PK-700-12X-64	1030	1185	29	33	18	84.5	1199	1200	1450	1550	1550
PK-750-12S-48	1050	1208	25	28	18	82.0	1214	1220	1220	1240	1250
PK-750-12S-56	1050	1208	29	33	18	84.5	1219	1220	1220	1260	1300
PK-750-12M-64	1075	1236	29	33	18	84.5	1244	1250	1250	1500	1500
PK-750-12L-72	1095	1259	29	33	18	84.5	1264	1270	1450	1800	1800
PK-800-12S-48	1100	1265	25	28	18	82.0	1264	1270	1270	1300	1300
PK-800-12S-56	1100	1265	29	33	18	84.5	1269	1270	1270	1380	1400
PK-800-12M-64	1125	1294	29	33	18	84.5	1294	1300	1340	1550	1550
PK-800-12L-72	1145	1317	29	33	18	84.5	1314	1320	1370	1800	1800
PK-850-12C-48	1117	1285	25	28	18	82.0	1281	1290	1290	1320	1350
PK-850-12S-56	1150	1323	29	33	18	84.5	1319	1330	1330	1360	1400
PK-850-12M-64	1175	1351	29	33	18	84.5	1344	1360	1360	1550	1550
PK-850-12L-72	1195	1374	29	33	18	84.5	1364	1380	1420	1800	1800
PK-900-12C-48	1167	1342	25	28	18	82.0	1331	1350	1370	1400	1400
PK-900-12S-56	1200	1380	29	33	18	84.5	1369	1380	1380	1410	1450
PK-900-12M-64	1225	1409	29	33	18	84.5	1394	1410	1410	1500	1550
PK-900-12L-72	1245	1432	29	33	18	84.5	1414	1440	1480	1720	1800
PK-950-12S-48	1250	1438	25	28	18	82.0	1414	1440	1440	1440	1450
PK-950-12S-56	1250	1438	29	33	18	84.5	1419	1440	1440	1460	1500
PK-950-12M-64	1275	1466	29	33	18	84.5	1444	1470	1470	1490	1600
PK-950-12L-72	1295	1489	29	33	18	84.5	1464	1490	1520	1800	1800
PK-1000-12S-48	1300	1495	25	28	18	82.0	1464	1500	1500	1500	1500
PK-1000-12S-56	1300	1495	29	33	18	84.5	1469	1500	1500	1510	1550
PK-1000-12M-64	1325	1524	29	33	18	84.5	1494	1530	1530	1540	1650
PK-1000-12L-72	1345	1547	29	33	18	84.5	1514	1550	1550	1800	1800

円形鋼管:アンカーボルト4本タイプ

	ベース	1)	立上り	鉄筋	フープ 筋	e 1	②立上筋	RC柱型外径				
NCベース型式	外径		鉄筋径	最外径	最外径		ベース外径	評定上	圧縮領域	引張領域	詳細	
	D	Dx1. 15	d t	d b	df	50+df	De	最小径	最小径	最小径	設計例	
						+db/2	(D+2*e1)	b 1	b 2	b 3	b	
PC-200-4S-24	300	345	16	18	14	73.0	446	450	450	450	500	
PC-250-4S-24	350	403	16	18	14	73.0	496	500	530	530	530	
PC-300-4S-24	394	453	16	18	14	73.0	540	540	600	600	600	
PC-300-4S-30	394	453	22	25	14	76.5	547	550	600	600	600	
PC-350-4S-30	470	541	22	25	14	76.5	623	630	650	650	650	
PC-350-4S-36	470	541	25	28	14	78.0	626	630	670	670	700	
PC-400-4S-36	540	621	25	28	14	78.0	696	700	720	720	750	
PC-400-4S-42	540	621	25	28	14	78.0	696	700	730	730	750	

円形鋼管:アンカーボルト8本タイプ

(単位:mm)

(単位:mm)

	へ゛ース	(1)	立上り	鉄筋	フープ 筋	e 1	②立上筋		RC柱型	型外径	
NCベース型式	外径	0	鉄筋径	最外径	最外径		ベース外径	評定上	圧縮領域	引張領域	詳細
	D	Dx1, 15	d t	d b	df	50+df	De	最小径	最小径	最小径	設計例
						+db/2	(D+2*e1)	b 1	b 2	b 3	b
PM-400-8S-30	567	652	25	28	14	78.0	723	730	730	730	750
PM-400-8S-36	567	652	25	28	14	78.0	723	730	750	750	750
PM-450-8C-36	565	650	25	28	14	78.0	721	730	730	800	800
PM-450-8S-36	620	713	25	28	14	78.0	776	780	780	780	800
PM-450-8S-42	620	713	25	28	14	78.0	776	780	780	800	800
PM-500-8C-36	599	689	25	28	14	78.0	755	760	760	800	800
PM-500-8S-42	665	765	25	28	18	82.0	829	830	830	860	860
PM-500-8S-48	665	765	25	28	18	82.0	829	830	830	900	900
PM-500-8M-56	710	817	25	28	18	82.0	874	880	880	1050	950 (1050)
PM-550-8C-36	649	746	25	28	14	78.0	805	810	810	850	850
PM-550-8S-42	715	822	25	28	18	82.0	879	880	880	910	910
PM-550-8S-48	715	822	25	28	18	82.0	879	880	880	950	950
PM-550-8M-56	848	975	25	28	18	82.0	10 12	1020	1020	1050	1050
PM-600-8C-36	699	804	25	28	14	78.0	855	860	860	900	900
PM-600-8S-42	765	880	25	28	14	78.0	921	930	930	950	950
PM-600-8S-48	765	880	25	28	18	82.0	929	930	930	1000	1000
PM-600-8M-64	823	946	29	28	18	82.0	987	990	990	1100	1100
PM-650-8S-42	8 1 5	937	25	28	14	78.0	971	980	980	1000	1000
PM-650-8S-48	8 1 5	937	25	28	18	82.0	979	980	980	1030	1050
PM-650-8M-64	913	1050	29	33	18	84.5	1082	1090	1090	1150	1150
PM-700-8S-42	867	997	25	28	14	78.0	1023	1030	1030	1030	1050
PM-700-8S-48	867	997	25	28	18	82.0	1031	1040	1040	1070	1100
PM-700-8M-64	1040	1196	29	33	18	84.5	1209	1210	1210	1250	1250
PM-750-8S-48	920	1058	25	28	18	82.0	1084	1090	1090	1090	1100
PM-750-8S-56	920	1058	25	28	18	82.0	1084	1090	1090	1150	1150
PM-750-8M-64	1065	1225	29	33	18	84.5	1234	1240	1240	1300	1300
PM-800-8S-48	970	1116	25	28	18	82.0	1134	1140	1140	1140	1150
PM-800-8S-56	970	1116	25	28	18	82.0	1134	1140	1140	1180	1200
PM-800-8M-64	1115	1282	29	33	18	84.5	1284	1290	1290	1370	1400
PM-850-8S-48	1020	1173	25	28	18	82.0	1184	1190	1190	1190	1250
PM-850-8S-56	1020	1173	25	28	18	82.0	1184	1190	1190	1290	1300
PM-900-8S-48	1070	1231	25	28	18	82.0	1234	1240	1240	1240	1300
PM-900-8S-56	1070	1231	25	28	18	82.0	1234	1240	1240	1370	1400

付4 柱脚のせん断耐力の計算例

柱脚部に作用するせん断力は、以下の何れかの方法で基礎に伝達します。

- ① ベース下面とコンクリートとの間の摩擦力による方法
- ②アンカーボルトのせん断耐力による方法
- ③柱側面のコンクリートの支圧抵抗による方法

(柱前面に負担できるスラブコンクリート等がある場合のみ)

④ベースプレート下面に溶接したシヤープレート等による方法

尚、③柱側面のコンクリートの支圧抵抗による方法は、①あるいは②と併用することが出来ます。 また、④の方法による場合は、設計者様の独自設計により検討することになります。

本節では、②アンカーボルトのせん断耐力、および、③柱側面のコンクリートの支圧抵抗の計算例を参考として示します。

4. 1 柱側面のスラプコンクリートの支圧抵抗による方法

アンカーボールトのスラブ のコンクリートかぶり厚を $20 \,\mathrm{mm}$ (上ナットがシングールの場合の最小値) とした場合の、コンクリート支圧抵抗力の計算例を参考として示します。 (Fc= $21 \,\mathrm{N/mm}^2$ 、注入金物無し前提)

1)短期時

Q_{a2} : 柱側面のコンクリート支圧抵抗力 (柱前面に負担できるスラプコンクリート等がある場合のみ)

 $Q_{a2} = 2/3 \cdot Fc' \cdot Sc$

Fc' =1. 1xFc

Sc: スラブコンクリートに埋め込まれている柱断面積とベース側面積の和

 $= B1 \times d1 + D \times t$

B1: 柱外径

d1: ベース上面からスラブ上面までの寸法

D : ベース外径 t : ベース厚

2)終局時

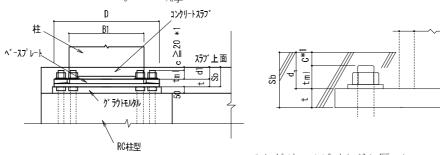
Qu2 :柱側面のコンクリート支圧抵抗力 (柱前面に負担できるスラプコンクリート等がある場合のみ)

 $Q_{u2} = 0.85 \cdot Fc' \cdot Sc$

Fc' =1. 1xFc

但し 径厚比が「鋼構造限界状態設計指針」による 板要素の幅厚比区分 $P-\Pi$ ランク以下の鋼管柱の場合は、 $Q_{u2}=2/3\cdot Fc'\cdot Sc$ とする。(短期時と同じ)

3c : スラブコンクリートに埋め込まれている柱断面積とベース側面積の和


= $B1 \times d1 + D \times t$

B1:柱外径

d1:ベース上面からスラブ上面までの寸法

D:ベース外径

t : ベース厚

*1 c: アンカーボルトのコンクリートかぶり厚 ≥20

*2 Sb: ベース下面からスラブ上面までの寸法

*3 d1: ベース上面からスラブ上面までの寸法

*4 tml: ベース上面からアンカーボルト天端での寸法

(注) 1. Sb、Scを算出する場合は、d1=tml+c(c=20)として計算しています。

4.1.1 柱側面のコンクリート支圧によるせん断抵抗力

1) 角形鋼管 アンカーボルト4本タイプ

基礎コンクリート Fc=21N/mm²

_ / / / / / / FI /	万万万町 自 フィル N								
	B1	Sb*2	d1*3	D	t	tm1*4	Sc	Qa ₂	Qu ₂
NCベース型式	柱径			ベース外径	ベース厚		有効面積	短期耐力	終局耐力
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm^2)	(kN)	(kN)
PS-150-4C-24	150	85	57	276	28	37	16, 278	251	320
PS-175-4C-24	175	85	57	300	28	37	18, 375	283	361
PS-200-4C-24	200	85	57	326	28	37	20,528	316	403
PS-200-4S-27	200	92	60	340	32	40	22, 880	352	449
PS-200-4M-30	200	100	64	344	36	44	25, 184	388	494
PS-250-4C-24	250	85	57	386	28	37	25, 058	386	492
PS-250-4S-27	250	92	60	390	32	40	27, 480	423	540
PS-250-4M-30	250	100	64	394	36	44	30, 184	465	593
PS-250-4L-36	250	111	71	415	40	51	34, 350	529	674
PS-300-4S-27	300	92	60	440	32	40	32,080	494	630
PS-300-4M-30	300	100	64	444	36	44	35, 184	542	691
PS-300-4L-36	300	111	71	500	40	51	41, 300	636	811
PS-300-4L-42	300	126	81	500	45	61	46,800	721	919
PS-350-4C-30	350	100	64	494	36	44	40, 184	619	789
PS-350-4S-36	350	111	71	515	40	51	45, 450	700	892
PS-350-4M-42	350	126	81	540	45	61	52,650	811	1,034
PS-350-4L-48	350	142	87	565	55	67	61, 525	947	1, 208
PS-400-4C-30	400	100	64	546	36	44	45, 256	697	889
PS-400-4S-36	400	116	71	567	45	51	53, 915	830	1,059
PS-400-4M-42	400	131	81	592	50	61	62,000	955	1, 217
PS-400-4L-48	400	142	87	617	55	67	68, 735	1,059	1,350
PS-400-4X-56	400	161	96	649	65	76	80, 585	1,241	1,582

2) 角形鋼管	アンカーホ゛ルー	8 本タイン	J°			基礎コンク	リ - ト Fc=211	N/mm^2	
	B1	Sb*2	$d1^{*3}$	D	t	tm1*4	Sc	Qa ₂	Qu $_2$
NC^゙ース型式	柱径			ベース外径	ベース厚		有効面積	短期耐力	終局耐力
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm^2)	(kN)	(kN)
PK-350-8S-30	350	104	64	522	40	44	43, 280	667	850
PK-350-8M-36	350	116	71	574	45	51	50,680	780	995
PK-350-8M-42	350	131	81	574	50	61	57,050	879	1, 120
PK-400-8S-30	400	104	64	574	40	44	48, 560	748	953
PK-400-8M-36	400	121	71	599	50	51	58, 350	899	1, 146
PK-400-8L-42	400	136	81	626	55	61	66,830	1,029	1,312
PK-450-8C-30	450	104	64	624	40	44	53, 760	828	1,056
PK-450-8S-36	450	121	71	649	50	51	64, 400	992	1,264
PK-450-8M-42	450	136	81	676	55	61	73,630	1, 134	1,446
PK-450-8L-48	450	147	87	715	60	67	82,050	1,264	1,611
PK-500-8C-30	500	104	64	699	40	44	59, 960	923	1, 177
PK-500-8C-36	500	121	71	699	50	51	70, 450	1,085	1,383
PK-500-8S-42	500	136	81	726	55	61	80, 430	1,239	1, 579
PK-500-8M-48	500	147	87	765	60	67	89, 400	1,377	1,755
PK-500-8X-56	500	166	96	800	70	76	104,000	1,602	2,042
PK-550-8C-36	550	121	71	749	50	51	76,500	1, 178	1,502
PK-550-8S-42	550	136	81	776	55	61	87, 230	1,343	1,713
PK-550-8M-48	550	147	87	815	60	67	96, 750	1,490	1,900
PK-550-8X-56	550	166	96	850	70	76	112, 300	1,729	2,205
PK-550-8WX-64	550	182	107	875	75	87	124, 475	1,917	2,444
PK-600-8S-42	600	136	81	828	55	61	94, 140	1,450	1,848
PK-600-8M-48	600	147	87	867	60	67	104, 220	1,605	2,046
PK-600-8L-56	600	166	96	900	70	76	120,600	1,857	2,368
PK-600-8X-64	600	182	107	925	75	87	133, 575	2,057	2,623
PK-650-8S-42	650	136	81	917	55	61	103, 085	1,588	2,024
PK-650-8S-48	650	147	87	917	60	67	111, 570	1,718	2, 191
PK-650-8L-56	650	166	96	950	70	76	128, 900	1,985	2,531
PK-650-8X-64	650	182	107	980	75	87	143,050	2,203	2,809
PK-650-8WX-72	650	199	114	1000	85	94	159, 100	2,450	3, 124

2) 角形鋼管 アンカーボ ルト 8 本タイプ 基礎コンクリート Fc=21N/mm²

	B1	Sb*2	d1*3	D	t	$\operatorname{tm} 1^{*4}$	Sc	Qa ₂	Qu ₂
NCベース型式	柱径			ベース外径	ベース厚		有効面積	短期耐力	終局耐力
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm^2)	(kN)	(kN)
PK-700-8S-42	700	136	81	967	55	61	109, 885	1,692	2, 158
PK-700-8S-48	700	147	87	967	60	67	118, 920	1,831	2,335
PK-700-8L-56	700	166	96	1000	70	76	137, 200	2, 113	2,694
PK-700-8X-64	700	182	107	1030	75	87	152, 150	2,343	2, 987
PK-700-8WX-72	700	199	114	1050	85	94	169, 050	2,603	3,319
PK-750-8S-48	750	147	87	1050	60	67	128, 250	1, 975	2,518
PK-750-8S-56	750	166	96	1050	70	76	145, 500	2,241	2,857
PK-750-8M-64	750	182	107	1075	75	87	160, 875	2,477	3, 159
PK-750-8L-72	750	199	114	1095	85	94	178, 575	2,750	3,506
PK-800-8S-48	800	147	87	1100	60	67	135,600	2,088	2,663
PK-800-8S-56	800	166	96	1100	70	76	153, 800	2,369	3,020
PK-800-8M-64	800	182	107	1125	75	87	169, 975	2,618	3, 337
PK-800-8L-72	800	199	114	1145	85	94	188, 525	2,903	3,702
PK-850-8C-48	850	147	87	1117	60	67	140, 970	2, 171	2,768
PK-850-8S-56	850	166	96	1150	70	76	162, 100	2,496	3, 183
PK-850-8M-64	850	182	107	1175	75	87	179, 075	2,758	3,516
PK-850-8L-72	850	199	114	1195	85	94	198, 475	3,057	3,897
PK-900-8C-48	900	147	87	1167	60	67	148, 320	2,284	2,912
PK-900-8S-56	900	166	96	1200	70	76	170, 400	2,624	3,346
PK-900-8M-64	900	182	107	1225	75	87	188, 175	2,898	3,695
PK-900-8L-72	900	199	114	1245	85	94	208, 425	3,210	4,092

2)-1 角形鋼管 アンカーボ ルト 8 本タイプ (CFT・ブ レース用) 基礎コンクリート Fc=21N/mm²

	B1	Sb*2	d1*3	D	t	$tm1^{*4}$	Sc	Qa ₂	Qu ₂
NC^゙ース型式	柱径			ベース外径	ベース厚		有効面積	短期耐力	終局耐力
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm ²)	(kN)	(kN)
PK-350-8B-42	350	136	81	640	55	61	63,550	979	1,248
PK-400-8B-42	400	141	81	710	60	61	75,000	1, 155	1, 473
PK-450-8B-48	450	152	87	760	65	67	88, 550	1,364	1,739
PK-500-8B-56	500	171	96	885	75	76	114, 375	1,761	2,246
PK-550-8B-56	550	171	96	935	75	76	122, 925	1,893	2,414
PK-600-8B-64	600	192	107	1040	85	87	152,600	2,350	2,996
PK-650-8B-64	650	192	107	1090	85	87	162, 200	2,498	3, 185
PK-700-8B-64	700	192	107	1140	85	87	171,800	2,646	3,373
PK-750-8B-64	750	192	107	1190	85	87	181, 400	2,794	3,562
PK-800-8B-64	800	192	107	1250	85	87	191,850	2,954	3,767
PK-850-8B-64	850	192	107	1300	85	87	201, 450	3, 102	3, 955
PK-900-8B-64	900	192	107	1350	85	87	211,050	3,250	4, 144

3) 角形鋼管 アンカーボット 1 2 本タイプ 基礎コンクリート Fc=21N/mm²

	B1	Sb*2	d1*3	D	t	tm1*4	Sc	Qa ₂	Qu ₂
NCベース型式	柱径			ベース外径	ベース厚		有効面積	短期耐力	終局耐力
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm^2)	(kN)	(kN)
PK-700-12S-42	700	136	81	967	55	61	109, 885	1,692	2, 158
PK-700-12S-48	700	147	87	967	60	67	118, 920	1,831	2,335
PK-700-12L-56	700	166	96	1000	70	76	137, 200	2, 113	2,694
PK-700-12X-64	700	182	107	1030	75	87	152, 150	2,343	2, 987
PK-750-12S-48	750	147	87	1050	60	67	128, 250	1, 975	2,518
PK-750-12S-56	750	166	96	1050	70	76	145, 500	2,241	2,857
PK-750-12M-64	750	182	107	1075	75	87	160,875	2, 477	3, 159
PK-750-12L-72	750	199	114	1095	85	94	178, 575	2,750	3,506
PK-800-12S-48	800	147	87	1100	60	67	135,600	2,088	2,663
PK-800-12S-56	800	166	96	1100	70	76	153, 800	2,369	3,020
PK-800-12M-64	800	182	107	1125	75	87	169, 975	2,618	3,337
PK-800-12L-72	800	199	114	1145	85	94	188, 525	2,903	3,702

3) 角形鋼管 アンカーボ ルト 1 2 本タイプ 基礎コンクリート Fc=21N/mm²

	2 Pet 1777 13 2 2177								
	B1	Sb*2	d1*3	D	t	$tm1^{*4}$	Sc	Qa ₂	Qu ₂
NC^゙ース型式	柱径			ベース外径	ベース厚		有効面積	短期耐力	終局耐力
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm^2)	(kN)	(kN)
PK-850-12C-48	850	147	87	1117	60	67	140, 970	2, 171	2,768
PK-850-12S-56	850	166	96	1150	70	76	162, 100	2, 496	3, 183
PK-850-12M-64	850	182	107	1175	75	87	179,075	2,758	3,516
PK-850-12L-72	850	199	114	1195	85	94	198, 475	3,057	3,897
PK-900-12C-48	900	147	87	1167	60	67	148, 320	2,284	2,912
PK-900-12S-56	900	166	96	1200	70	76	170, 400	2,624	3,346
PK-900-12M-64	900	182	107	1225	75	87	188, 175	2,898	3,695
PK-900-12L-72	900	199	114	1245	85	94	208, 425	3,210	4,092
PK-950-12S-48	950	147	87	1250	60	67	157, 650	2, 428	3,095
PK-950-12S-56	950	166	96	1250	70	76	178, 700	2,752	3,509
PK-950-12M-64	950	182	107	1275	75	87	197, 275	3,038	3,873
PK-950-12L-72	950	199	114	1295	85	94	218, 375	3,363	4,288
PK-1000-12S-48	1000	147	87	1300	60	67	165,000	2,541	3,240
PK-1000-12S-56	1000	166	96	1300	70	76	187,000	2,880	3,672
PK-1000-12M-64	1000	182	107	1325	75	87	206, 375	3, 178	4,052
PK-1000-12L-72	1000	199	114	1345	85	94	228, 325	3,516	4, 483

4) 円形鋼管 アンカーボ ルト 4 本タイプ 基礎コンクリート Fc=21N/mm²

	B1	Sb*2	d1*3	D	t	$tm1^{*4}$	Sc	Qa ₂	Qu ₂
NC^゙ース型式	柱径			ベース外径	ベース厚		有効面積	短期耐力	終局耐力
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm ²)	(kN)	(kN)
PC-200-4S-24	200	89	57	240	32	37	19,080	294	375
PC-250-4S-24	250	85	57	270	28	37	21,810	336	428
PC-300-4S-24	300	89	57	324	32	37	27, 468	423	539
PC-300-4S-30	300	100	64	324	36	44	30,864	475	606
PC-350-4S-30	350	104	64	380	40	44	37,600	579	738
PC-350-4S-36	350	116	71	380	45	51	41, 950	646	824
PC-400-4S-36	400	116	71	440	45	51	48, 200	742	946
PC-400-4S-42	400	131	81	440	50	61	54, 400	838	1,068

5) 円形鋼管 アンカーボ ルト 8 本タイプ 基礎コンクリート Fc=21N/mm²

= 7 1700 FIVE 1 1 1 1 1 1 1 1 1									
	B1	Sb*2	d1*3	D	t	$\operatorname{tm} 1^{*4}$	Sc	Qa ₂	Qu ₂
NCベース型式	柱径			ベース外径	ベース厚		有効面積	短期耐力	終局耐力
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm^2)	(kN)	(kN)
PM-400-8S-30	400	124	64	567	50	44	53, 950	831	1,059
PM-400-8S-36	400	131	71	567	50	51	56, 750	874	1, 114
PM-450-8C-36	450	116	71	565	45	51	57, 375	884	1, 127
PM-450-8S-36	450	126	71	620	55	51	66,050	1,017	1,297
PM-450-8S-42	450	136	81	620	55	61	70,550	1,086	1,385
PM-500-8C-36	500	116	71	599	45	51	62, 455	962	1,226
PM-500-8S-42	500	136	81	665	55	61	77,075	1, 187	1,513
PM-500-8S-48	500	142	87	665	55	67	80,075	1,233	1,572
PM-500-8M-56	500	161	96	710	65	76	94, 150	1,450	1,849
PM-550-8C-36	550	121	71	649	50	51	71,500	1, 101	1,404
PM-550-8S-42	550	136	81	715	55	61	83, 875	1,292	1,647
PM-550-8S-48	550	147	87	715	60	67	90,750	1,398	1,782
PM-550-8M-56	550	176	96	848	80	76	120,640	1,858	2,369
PM-600-8C-36	600	121	71	699	50	51	77, 550	1, 194	1,523
PM-600-8S-42	600	141	81	765	60	61	94, 500	1, 455	1,856
PM-600-8S-48	600	147	87	765	60	67	98, 100	1,511	1, 926
PM-600-8M-64	600	182	107	823	75	87	125, 925	1, 939	2, 473
PM-650-8S-42	650	141	81	815	60	61	101,550	1,564	1, 994
PM-650-8S-48	650	152	87	815	65	67	109, 525	1,687	2, 151
PM-650-8M-64	650	187	107	913	80	87	142, 590	2, 196	2,800

5) 円形鋼管 アンカーボルト8本タイプ

基礎コンクリート Fc=21N/mm²

	B1	Sb*2	$d1^{*3}$	D	t	$tm1^{*4}$	Sc	Qa ₂	Qu ₂
NC^゙ース型式	柱径			ベース外径	ベース厚		有効面積	短期耐力	終局耐力
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm ²)	(kN)	(kN)
PM-700-8S-42	700	141	81	867	60	61	108, 720	1,674	2, 135
PM-700-8S-48	700	152	87	867	65	67	117, 255	1,806	2,302
PM-700-8M-64	700	202	107	1040	95	87	173, 700	2,675	3,411
PM-750-8S-48	750	152	87	920	65	67	125, 050	1, 926	2, 455
PM-750-8S-56	750	161	96	920	65	76	131,800	2,030	2,588
PM-750-8M-64	750	197	107	1065	90	87	176, 100	2,712	3,458
PM-800-8S-48	800	152	87	970	65	67	132,650	2,043	2,605
PM-800-8S-56	800	166	96	970	70	76	144, 700	2,228	2,841
PM-800-8M-64	800	202	107	1115	95	87	191, 525	2,949	3,761
PM-850-8S-48	850	157	87	1020	70	67	145, 350	2,238	2,854
PM-850-8S-56	850	166	96	1020	70	76	153,000	2,356	3,004
PM-900-8S-48	900	157	87	1070	70	67	153, 200	2,359	3,008
PM-900-8S-56	900	171	96	1070	75	76	166,650	2,566	3,272

4 2 アンカーボルトのせん断耐力による方法

アンカーボルトのせん断耐力は、アンカーボルトに生じる引張力とせん断力の組合せを考慮して

算定します。 ここでは、アンカーボルトに引張力が生じていない場合(圧縮側アンカーボルト)のせん断耐力の 上限値を参考として示します。

圧縮側アンカーボルトのせん断耐力

(単位 kN)

	アンフ	かーボ゛ルト (1	本あたり))	NCベース(1柱あたり)							
	引張	耐力	せん	断耐力	アンカーホ゛ルト	:4本タイプ	アンカーホ゛ルト	:8本タイプ	アンカーボルト:12本タイプ			
	短期	終局	短期	終局	アンカーホ゛ル	ト2 本分	アンカーホ゛ル	↑4 本分	アンカーホ゛ル	ト7本分		
外径	Ty (kN)	Tu (kN)	Qa (kN)	Qu (kN)	短期	終局	短期	終局	短期	終局		
(mm)	$(A \times F)$	(Ab×F)	$(Ty/\sqrt{3})$	$(Tu/\sqrt{3})$	Qa	Qu	Qa	Qu	Qa	Qu		
M24	173.0	221.5	99.9	127.9	200	256		_				
M27	224.9	280.8	129.9	162.1	260	324						
M30	274.9	346.4	158.7	200.0	317	400	635	800				
M36	400.3	498.8	231.1	288.0	462	576	925	1, 152				
M42	548.8	678.7	316.8	391.8	634	784	1, 267	1, 567	2, 218	2, 743		
M48	720.3	886.9	415.9	512.1	832	1, 024	1, 663	2, 048	2, 911	3, 584		
M56	994.7	1, 206	574. 3	696.8	1, 149	1, 394	2, 297	2, 787	4, 020	4,878		
M64	1, 313	1, 576	758.2	910.1		_	3, 033	3, 640	5, 307	6, 371		
M72	1, 695	1, 995	978.8	1, 152		_	3, 915	4, 608	6, 852	8, 064		

Ty : アンカーボルトのネジ部降伏荷重 As: ネジ部断面積 (mm²) $F=490 \text{N/mm}^2$

Tu: アンカーボルトの軸部降伏荷重 Ab : 軸部断面積(mm²)

(注) 弊社「NCペース柱脚検定プログラム」ではアンカーボルトの引張力を考慮して、 全ボルト(引張側も含めた)のせん断耐力を算定しています。

付5 RC基礎柱型立上り筋の必要定着長さ (礎柱を鉄筋コンツート造柱として計算する場合)

1. 必要定着長さ

(1) 鉄筋ンツ- |構造計算規準・同解説(2010年版)による場合

 $lab = \alpha((S*\sigma_t*d_b)/(10*f_b))$ 算定式

Fc/40+0.9 (N/mm²) も 付着割裂の規準となる強度

σ, . 鉄筋の短期許容応力度

鉄筋の呼び名(径) 9

വ ഗ

標準フック付は S=0.7 S=1.25 横補強筋で拘束されたJJ内 α=1、他 α=125 修正係数 表17.1による ----- 直線定着は

2. 立上り筋の定着有効長さ(アカー定着板より立上り筋上端までの長さ)

呼び径	軸径	4本外7。	8,12本947。	
M24	24		1	
M27	27	305		
M30	30		500	
M36	36	440	620	
M42	42		740	
M48	48		098	
M56	56		1020	
M64	64	1	1180	
M72	72		1335	

3. 鉄筋エンツート柱として計算する場合の定着長の過不足 (アンカーボル) 径と RC柱型鉄筋径の組合せによる)

(1) RC構造計算規準・同解説(2010年版)による場合

	- 7] } }		_		枠内は	設計シバ	、力詳細設	枠内は設計ハバブック詳細設計例の組合せ	中
Fc=21 のとき		定着長の過不足	不足 F:	7,7 (1 COK		S:7ック無(直線)	MOK MOK					l
		A	AB 4 本タイプ。	立上り筋径	Ķ#I			AB 8	本、12本タイプ。	立上り) 筋径	
呼び径	有効定着長	長 16	19	22	25	29	有効定着長	19	22	25	29	32
直必要定着長		414	575	999	757	366		275	999	757	992	1095
7必要定着長		232	322	373	424	556		322	373	424	556	613
M24	300	00 O F	(NG)	(NG)	(NG)	(NG)						
M27	302	15 O F	(NG)	(NG)	(NG)	(NG)		_		1	_	
M30	350	0 F	OF	(NG)	(NG)	(NG)	500	OF	OF	OF	(NG)	(NG)
M36	440	S O 0	O F	OF	OF	(DN)	620	SO	ОЕ	OF	O F	O F
M42	530	S O 0	O F	OF	OF	(5N)	740	SO	s o	OF	3 O	O F
M48	620	S O 0	SO	OF	OF	9 O	098	SO	SO	SO	O F	OF
M56	740	S O 0	s O	s o	OF	9 O	1020	SO	s O	SO	SO	O F
M64					-	_	1180	SO	S O	SO	S O	SO
M72			-		-	_	1335	SO	S O	OS	SO	SO

① セル内 BはRC柱としての検定は不可(コーン破壊or立上り筋付着計算による)② セル内 BはRC柱として検定する場合は立上り筋は全てフック付とする③ セル内 BはRC柱として検定する場合は立上り筋は全てフック無しでよい

Fc=24 のとき 定着長の過不足 F: フック付でOK S:フック無(直線)でOK

-] -		AB 4	AB 4 本タイプ	立上り筋径	. 24		,)	AB8	本、12本タイプ。	17。立上り	筋径	
呼び径	有効定着長	16	19	22	25	29	有効定着長	19	22	25	29	32
直一必要定着長	tuls/	868	546	889	719	943		546	633	719	943	1040
7必要定着長	25	220	306	354	403	528		306	354	403	528	582
M24	300	OF	(DN)	(5N)	(NG)	(NG)						
M27	305	O F	(NC)	(SN)	(NG)	(NG)		1	_	_	_	1
M30	350	OF	4 O	(DN)	(NG)	(NG)	200	OF	OF	OF	(NG)	(NG)
M36	440	SO	9 O	A O	OF	(NG)	620	SO	OF	OF	OF	O F
M42	530	SO	4 O	A O	OF	3 O	740	SO	SO	SO	OF	O F
M48	620	SO	SO	3 O	OF	3 O	098	s o	SO	SO	OF	O F
M56	740	SO	SO	SO	SO	3 O	1020	s o	SO	SO	SO	O F
M64							1180	SO	SO	O S	SO	S O
M72				_		1	1335	S	S	s O	S O	s O

$F_c = 27$	とてま 河	看長の河	7 kg	71170	S:7%7	無(直線)	10 10 10 10 10 10 10 10 10 10 10 10 10 1				ŀ	
		AB	B 4 本タイプ	立上り筋作	径			AB 8	本、12本94	イプ 立上り	筋径	
呼び径	有効定着長	16	19	22	25	29	有効定着長	19	22	25	29	32
直一必要定着長	p. lo. 2	375	520	602	685	868		520	602	685	868	066
7必要定着長		210	291	337	383	503		291	337	383	503	555
M24	300	OF	OF	(NG)	(NG)	(NG)					_	
M27	305	O F	9 O	(NG)	(NG)	(NG)						-
M30	350	OF	O F	ОЕ	(NG)	(NG)	500	OF	OF	OF	(NG)	(NG)
M36	440	SO	OF	OF	OF	(NG)	620	SO	SO	OF	O F	OF
M42	530	SO	SO	O F	OF	OF	740	SO	SO	SO	A O	O F
M48	620	S O	SO	S O	OF	OF	098	SO	s o	SO	9 O	O F
M56	740	SO	SO	S O	s o	OF	1020	SO	S O	s o	S O	S O
M64				_			1180	SO	s o	S O	s o	s o
M72			_				1335	S O	s o	s o	s o	SO
Fc=30	のとず 沪	定着長の過不	맫.	ク付で0		S:7ック無(直線)で	rok rok			H		
		AE	B 4 本タイプ	<u> ユ 上り筋乳</u>	公			AB 8	本、12本94	17: 立上り		
呼び径	有効定着長	16	19	22	25	29	有効定着長	19	22	25	29	32
直必要定着長	د.ان ا	358		575	653	857		497	575	653	857	945
7~必要定着長		200	278	322	366	480		278	322	366	480	529
M24	300	OF	OF	(NG)	(NG)	(NG)						
M27	305	A O	9 O	(NG)	(NG)	(NG)						
M30	350	OF	O F	O F	(DN)	(NG)	200	SO	Э О	9 9	OF	(NG)
M36	440	SO	0 F	OF	OF	(NG)	620	SO	SO	OF	O F	O F
M42	530	S O	SO	O F) 	OF	740	SO	S O	s o	O F	0 F
M48	620	S O	SO	s o	O F	OF	098	SO	s o	s o	S O	0 F
M56	740	SO	SO	S O	SO	OF	1020	SO	SO	SO	SO	S O
M64		_	1		_	_	1180	SO	S O	SO	SO	S O
M72					-		1335	SO	SO	SO	S O	S O

付6 標準品ベースプレートの 形状および寸法

6. 1 角形鋼管 アンカーホ・ルト4本タイプ

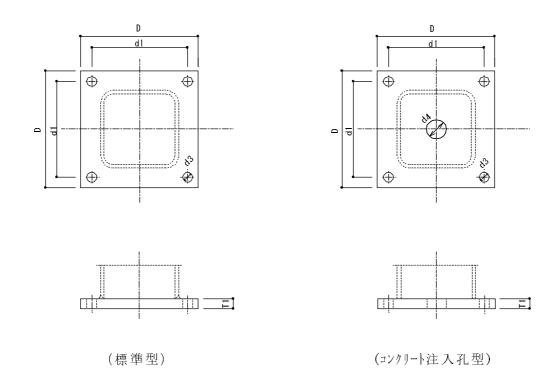


図 6.1 角形鋼管用 N C ベースプレートの標準形状 (アンカーボルト: 4 本タイプ)

表 6.1 標準品ベースプレートの形状と寸法

(角形鋼管用標準型) (アンカーボルト: 4 本タイプ) (単位:mm)

型式	D	d ₁	T 1	アンカーホ゛ルト
PS-150-4C	276	216	28	24
PS-175-4C	300	240	28	24
PS-200-4C	326	266	28	24
PS-200-4S	340	270	32	27
PS-200-4M	344	274	36	30
PS-250-4C	386	316	28	24
PS-250-4S	390	320	32	27
PS-250-4M	394	324	36	30
PS-250-4L	415	330	40	36
PS-300-4S	440	370	32	27
PS-300-4M	444	374	36	30
PS-300-4L	500	390	40/45	36/42

式	D	d_1	T 1	アンカーホ゛ルト
PS-350-4C	494	424	36	30
PS-350-4S	515	430	40	36
PS-350-4M	540	440	45	42
PS-350-4L	565	450	55	48
PS-400-4C	546	476	36	30
PS-400-4S	567	482	45	36
PS-400-4M	592	492	50	42
PS-400-4L	617	502	55	48
PS-400-4X	649	514	65	56

コンクリート注入孔型の場合 d4:150,129(PS-300),107(PS-250),86(PS-200)

6. 2 角形鋼管 アンカーホ・ルト 8 本タイプ

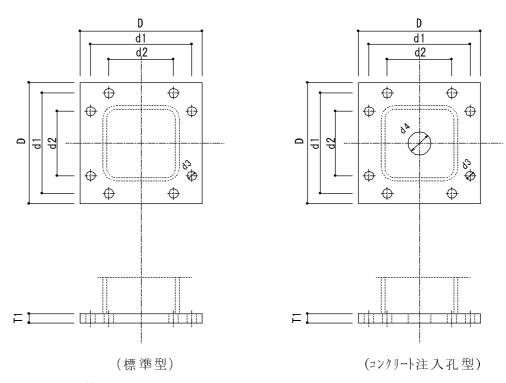


図 6.2 角形鋼管用 N C ベースプレートの標準形状 (アンカーボルト:8 本タイプ)

表 6.2 標準品ベースプレートの形状と寸法

(角形鋼管用標準型) (アンカーボルト: 8 本タイプ) (単位:mm)

(角形鋼管用標準型)	() \(\nabla \) \(\nabla \)	ルト: 8本	·91/ /	<u> </u>	阜位:mm)
型式	D	d_1	d_2	T ₁	アンカーホ゛ルト
PK-350-8S	522	452	318	40	30
PK-350-8M	574	474	296	45/50	36/42
PK-400-8S	574	504	370	40	30
PK-400-8M	599	514	360	50	36
PK-400-8L	626	526	348	55	42
PK-450-8C	624	554	420	40	30
PK-450-8S	649	564	410	50	36
PK-450-8M	676	576	398	55	42
PK-450-8L	715	600	386	60	48
PK-500-8C	699	614	460	40/50	30/36
PK-500-8S	726	626	448	55	42
PK-500-8M	765	650	436	60	48
PK-500-8X	800	663	424	70	56
PK-550-8C	749	664	510	50	36
PK-550-8S	776	676	498	55	42
PK-550-8M	815	700	486	60	48
PK-550-8X	850	713	474	70	56
PK-550-8WX	875	723	464	75	64
PK-600-8S	828	728	550	55	42
PK-600-8M	867	752	538	60	48
PK-600-8L	900	765	526	70	56
PK-600-8X	925	775	516	75	64
PK-650-8S	917	802	588	55/60	42/48
PK-650-8L	950	815	576	70	56
PK-650-8X	980	825	566	75	64
PK-650-8WX	1000	835	556	85	72
PK-700-8S	967	852	638	55/60	42/48
PK-700-8L	1000	865	626	70	56
PK-700-8X	1030	875	616	75	64
PK-700-8WX	1050	885	606	85	72
PK-750-8S	1050	915	676	60/70	48/56
PK-750-8M	1075	925	666	75	64
PK-750-8L	1095	935	656	85	72

型式	D	d_1	d_{2}	T ₁	アンカーホ゛ルト
PK-800-8S	1100	965	726	60/70	48/56
PK-800-8M	1125	975	716	75	64
PK-800-8L	1145	985	706	85	72
PK-850-8C	1117	1002	788	60	48
PK-850-8S	1150	1015	776	70	56
PK-850-8M	1175	1025	766	75	64
PK-850-8L	1195	1035	756	85	72
PK-900-8C	1167	1052	838	60	48
PK-900-8S	1200	1065	826	70	56
PK-900-8M	1225	1075	816	75	64
PK-900-8L	1245	1085	806	85	72

(特に大きい圧縮力への対応用)

型式	D	d_1	d ₂	T 1	アンカーホ゛ルト
PK-350-8B	640	500	330	55	42
PK-400-8B	710	550	380	60	42
PK-450-8B	760	630	430	65	48
PK-500-8B	885	710	480	75	56
PK-550-8B	935	760	530	75	56
PK-600-8B	1040	830	570	85	64
PK-650-8B	1090	890	630	85	64
PK-700-8B	1140	960	700	85	64
PK-750-8B	1190	990	730	85	64
PK-800-8B	1250	1050	790	85	64
PK-850-8B	1300	1100	840	85	64
PK-900-8B	1350	1150	890	85	64

コンクリート注入孔型の場合 d4:150

6.3 角形鋼管 アンカーホ・ルト 12 本タイプ

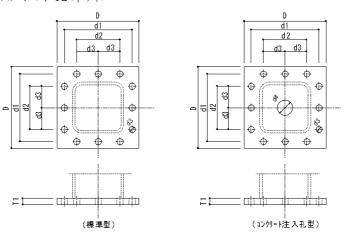


図 6.3 角形鋼管用NCベースプレートの標準形状 (アンカーボルト: 12 本タイプ)

表 6.3 標準品ベースプレートの形状と寸法 (角形鋼管用標準型) (アンカーボルト:12 本タイプ) (単位:mm)

型式	D	d ₁	d_2	T 1	アンカーホ゛ルト
PK-700-12S	967	852	638	55/60	42/48
PK-700-12L	1000	865	626	70	56
PK-700-12X	1030	875	616	75	64
PK-750-12S	1050	915	676	60/70	48/56
PK-750-12M	1075	925	666	75	64
PK-750-12L	1095	935	656	85	72
PK-800-12S	1100	965	726	60/70	48/56
PK-800-12M	1125	975	716	75	64
PK-800-12L	1145	985	706	85	72
PK-850-12C	1117	1002	788	60	48
PK-850-12S	1150	1015	776	70	56
PK-850-12M	1175	1025	766	75	64
PK-850-12L	1195	1035	756	85	72
PK-900-12C	1167	1052	838	60	48
PK-900-12S	1200	1065	826	70	56
PK-900-12M	1225	1075	816	75	64
PK-900-12L	1245	1085	806	85	72
PK-950-12S	1250	1115	876	60/70	48/56
PK-950-12M	1275	1125	866	75	64
PK-950-12L	1295	1135	856	85	72
PK-1000-12S	1300	1165	926	60/70	48/56
PK-1000-12M	1325	1175	916	75	64
PK-1000-12L	1345	1185	906	85	72

コンクリート注入孔型の場合 d4:150

6. 4 円形鋼管 アンカーホ・ルト4本タイプ。

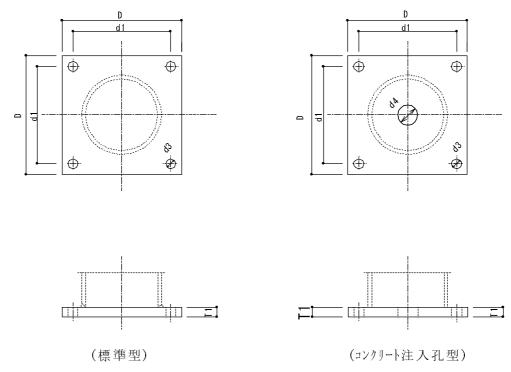


図 6.4 円形鋼管用 NC ベースプレートの標準形状 (アンカーボルト: 4 本タイプ)

表 6.4 標準品ベースプレートの形状と寸法

(円形鋼管用標準型) (アンカーボルト: 4 本タイプ) (単位:mm)

型式	D	d_1	T 1	アンカーホ゛ルト
PC-200-4S	300	240	32	24
PC-250-4S	350	270	28	24
PC-300-4S	394	324	32/36	24/30
PC-350-4S	470	380	40/45	30/36
PC-400-4S	540	440	45/50	36/42

コンクリート注入孔型の場合 d₄:150,129(PC-300),107(PC-250),86(PC-200)

6. 5 円形鋼管 アンカーホ・ルト 8 本タイプ

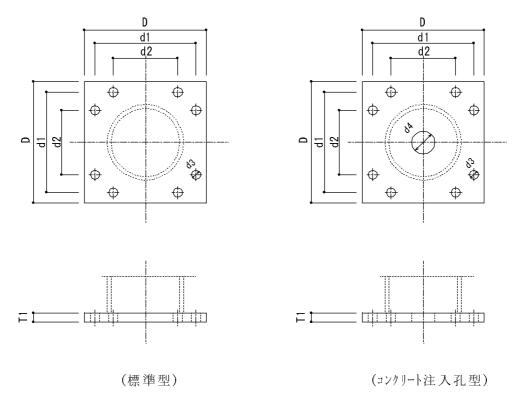
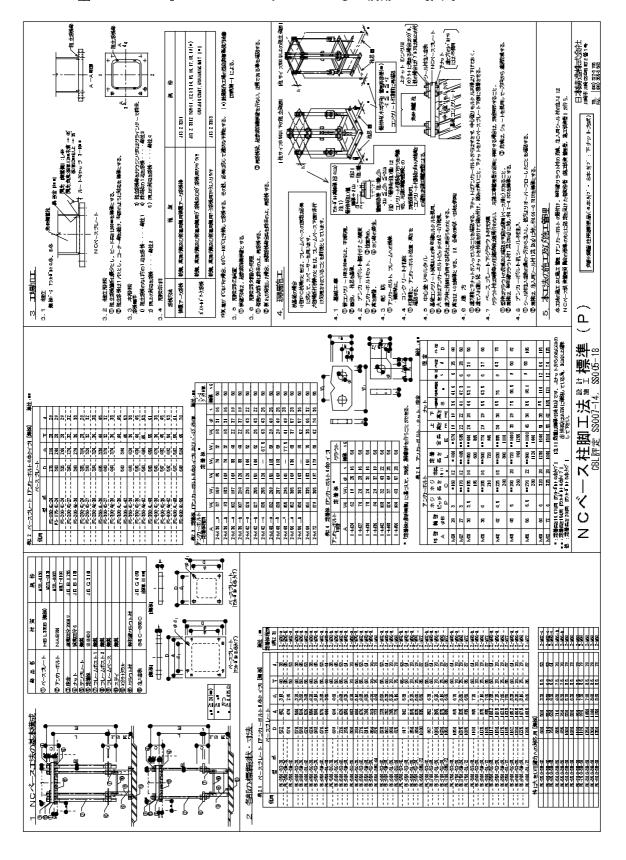


図 6.5 円形鋼管用 NC ベースプレートの標準形状 (アンカーボルト: 8 本タイプ)

表 6.5 標準品ベースプレートの形状と寸法

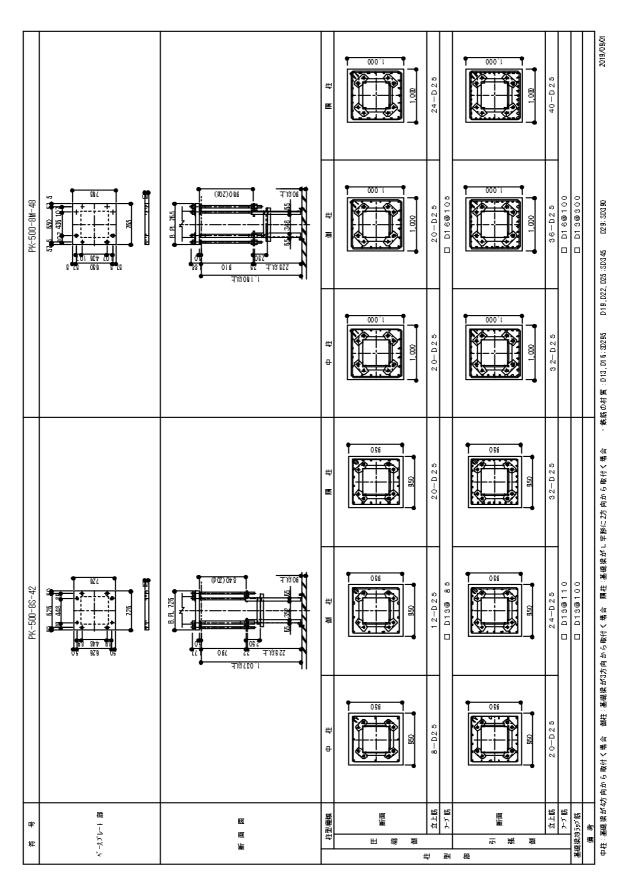
表 6.5 標準品べ (円形鋼管用標準型)					(単位: <u>m</u> m)
型式	D	d_1	d ₂	T 1	アンカーホ゛ルト
PM-400-8S	567	462	308	50/50	30/36
PM-450-8C	565	480	326	45	36
PM-450-8S	620	498	320	55/55	36/42
PM-500-8C	599	514	360	45	36
PM-500-8S	665	550	336	55/55	42/48
PM-500-8M	710	575	336	65	56
PM-550-8C	649	564	410	50	36
PM-550-8S	715	600	386	55/60	42/48
PM-550-8M	848	613	374	80	56
PM-600-8C	699	614	460	50	36
PM-600-8S	765	650	436	60/60	42/48
PM-600-8M	823	673	414	75	64
PM-650-8S	815	700	486	60/65	42/48
PM-650-8M	913	723	464	80	64

型式	D	d 1	d 2	T 1	アンカーホ゛ルト
PM-700-8S	867	752	538	60/65	42/48
PM-700-8M	1040	739	480	95	64
PM-750-8S	920	765	526	65/65	48/56
PM-750-8M	1065	775	516	90	64
PM-800-8S	970	815	576	65/70	48/56
PM-800-8M	1115	825	566	95	64
PM-850-8S	1020	865	626	70/70	48/56
PM-900-8S	1070	915	676	70/75	48/56

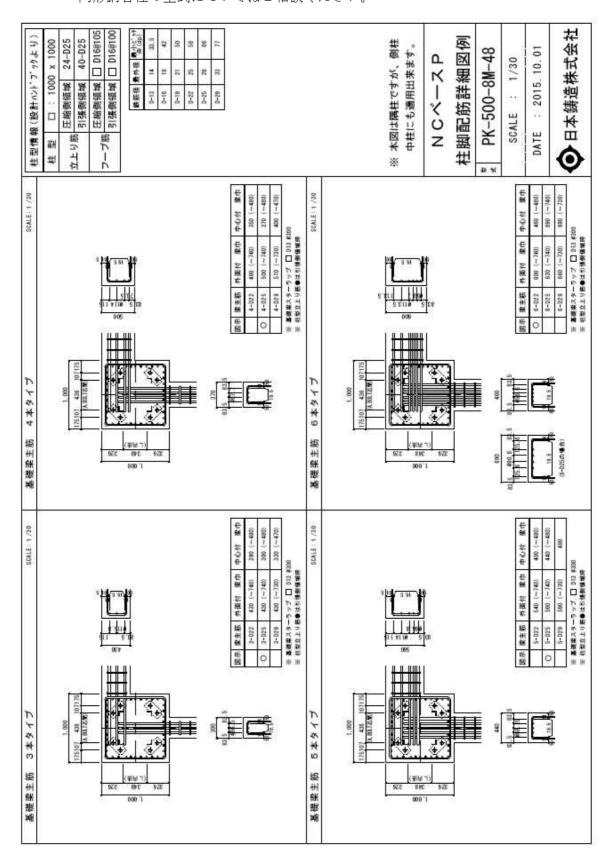

コンクリート注入孔型の場合 d4:150

付7 CAD関連図面

7.1 NCベース柱脚工法設計・施工標準(1例)


角形鋼管柱用標準品(4本タイプ・8本タイプ)を1例として下記に示します。このタイプの他に「角形鋼管柱用(12本タイプ)」、「円形鋼管柱用(4本タイプ・8本タイプ)」があります。

全て「NCベースP」のホームページよりダウンロードして使用できます。



7.2 RC基礎柱型標準配筋図(1例)

角形鋼管柱用 $PK-500-8S-42 \cdot PK-500-8M-48$ の標準配筋図を 1 例として下記に示します。全ての型式が、「 $NC^{\gamma}-XP$ 」の $t-4^{\gamma}-2^{\gamma}$ より f^{γ} ウンロート して使用できます。

7.3 RC基礎柱型および基礎梁の配筋詳細図例(1例)

資 料 編

目 次

		頁
資1	NCベース工法の基本的考え方	 161
資2	NCベース基礎柱型の設計・標準配筋について	 162
資3	NCベース工法の材質および基準強度	 163
資4	グラウトモルタルの製品規格	 164
資 5	RC基礎柱型の許容せん断力の設計式	 165
資6	RC基礎柱型の立上り筋の付着耐力の計算	 167

資1 NC ベース工法の基本的考え方

NCベース工法の基本的考え方は以下の通りである。

- ①柱脚部の短期許容耐力および終局耐力ならびに回転剛性の評価式が明確な構造とする。
- ②耐力の評価式において、ベースプレート下のコンクリートの支圧部の応力分布は、柱脚部の載荷実験結果を 基に等価な等分布に置き換える。
- ③耐力の評価式において、コンクリートの支圧試験の結果を基に局部支圧強度の上昇分を耐力式に反映 させる。
- ④柱脚部の短期許容耐力は、アンカーボルトのネジ部の降伏で決まるものとする。この時のコンクリートの許容支圧応力度は、2/3・F c '(F c ': 1.1x コンクリートの設計基準強度)を基に局部支圧応力の上昇分を加味したものとし、ベースプレートは弾性範囲内にとどまるものとする。
- ⑤柱脚部の終局耐力は、アンカーボルトの軸部の降伏で決まるものとする。この時のコンクリートの許容支圧 応力度は 0.85F c'を基に局部支圧応力の上昇分を加味したものとし、ベースプレートは 過大な変 形が生じないようにする。

尚、アンカーボルトは軸部が降伏してネジ部が破断するまで十分な塑性変形が生じるようにする。

- ⑥アンカーボルトは抜け出しを起こさないように基礎に定着する。定着長さは、20db(db: アンカーボルトの軸部の径)を標準とするが、4 本タイプは 15db 以上とする。また、アンカーボルトはアンボンドタイプとして評価するため、アンカーボルトに働く引張力はすべて定着板で支持する。
- ⑦回転剛性は、引張側アンカーボルトの伸び変形によるものと仮定し、日本建築学会の「鋼管構造設計施工指針同解説」の評価式に準拠し、実験により得られた結果を反映する。
- ⑧N C ベース工法の設計は以下の方法による。
 - i) 一次設計では⑦の回転剛性を考慮した架構解析結果の柱脚部の存在応力が④の短期許容耐力に収まっていることを確認する。

 - iii)下ナット方式では、第1層の Ds 値は上部構造の部材の Ds 値と同等とするが、第1層の保有水 平耐力が必要保有水平耐力に対して、1.1倍以上の余裕をもっているようにする。
 - iv) 下ナットなし方式では、第1層の Ds 値は上部構造の部材の Ds 値に対して 0.05 割増しする(ただし、第1層の保有水平耐力は必要保有水平耐力以上とする)。構造ランク IV の場合には、上記は適用しない。

なお、日本建築センターの「冷間成形角形鋼管設計・施工マニュアル」に基づいて設計する場合の一次設計における地震時柱応力の割増し係数、あるいは、二次設計時に局部崩壊メカニズムとなるときの柱耐力の低減率は、冷間成形角形鋼管の変形性能に関する固有のものであるから、NCベース部分には適用しない。

資2 NC ベース基礎柱型の設計・標準配筋について

1. アンカーボルトの定着

評定では以下のいずれかによることになっている。

- ① コンクリートコーン破壊耐力による
- ② RC 柱として設計する
- ③ 柱型部の立上り筋等の付着耐力等による(*1)

{*1-仮想的なコンクリートのコーン破壊面内に位置する、立上り筋の付着耐力 および柱型に取り付く基礎梁のスタラップ筋の引張耐力の協同作用による}

設計ハンドブックの付録1「RC基礎柱型の詳細設計例」では上記の③の方法により 設計した柱径・鉄筋量を一覧表にしている。

- ・表中の圧縮側領域とはアンカーボルトの片側半数に引張力が働く場合で 引張側領域とはアンカーボルト全数に引張力が働く場合を言う。
- この設計例では立上り筋のトップは「フックなし」で計算している。

尚、弊社「NC ベース柱脚検定プログラム」で検定してOK であれば上記「詳細設計例」の内容を変更することも可能である。(但し、他の設計細則を順守する必要がある)

2. コンクリートの破壊防止

評定での構造規定では

- ① 柱型の幅は、ベースプレートの幅の 1.15 倍以上とする。
- ② ベースプレート縁は、柱型の立上り筋の中心より内側に入っていること。

が条件となっており、これに従う場合は「コンクリートの破壊防止」の検討は不要である。 「詳細設計例」では上記を満足する寸法になっているため検討は不要である。

3. せん断破壊防止

柱型のせん断力の検定は柱脚のせん断力に対して短期は「鉄筋コンクリート構造計算規準・同解説(2010)」で終局は「国交省平成19年告示第594号第4」の式により検定してフーフ・筋の径、ピッチを設計する。

「詳細設計例」では柱脚部の曲げ耐力から求まる最大せん断力に対して、フーープ筋量を算定して例示している。

柱脚の存在せん断力で検定すればフープ筋量は減少することもある。

(弊社「NC ベース柱脚検定プログラム」で検定可能)

4. ベースプレートの破断防止

ベースプレートの設計法を評定で提示して認められている。

その設計法により、ベースプレートの形状寸法、板厚を決めているため、「ベースプレートの 破断防止」の検討は不要である。

資3 NC ベース工法の材質および基準強度

NC ベース工法の材質および基準強度は、下記の表による。

	材質	基準強度:F、Fc		
	・建築構造用 550N/mm ² TMCP 鋼材 HBL [®] 385B・C	385N/mm ²		
^*ースプレート	・建築構造高性能 590N/mm² 鋼材 SA440B・C、 HBL®440B・C	$440\mathrm{N/mm}^2$	t < 100	
	・建築構造用 TMCP 鋼材 HBL®355B・C (柱強度以上の場合)	$\begin{array}{c} t \leq 100 \text{mm} \\ 355 \text{N/mm}^2 \end{array}$		
	・建築構造用 TMCP 鋼材 HBL®325B・C (柱強度以上の場合)	$325\mathrm{N/mm^2}$		
グラウト材 (充填用)	無収縮性モルタル(非金属系)	基礎コンクリートの強度以上		
シール材 (注入用)	せがら(非金属系)			
基礎コンクリート	「JASS5 鉄筋コンクリート工事」に適合する 普通コンクリート	21N/mm ² 以上		
アンカーホ゛ルト	・NAB700 (国住指第 241 号 MSTL-0003) ・NAB700 (星田工場) (国住指第 3410 号 MBLT-0104)	$490\mathrm{N/mm^2}$	$\phi \leqq 72\mathrm{mm}$	
	「JIS B 0205 メートル並目ねじ」 「JIS B 0207 メートル細目ねじ」			
ナット	NAB700	強度区分6		
	NAB540	強度区分5又は6		
	六角ナット「JIS B 1181 六角ナット」	強度区分6		
座金	NAB700	硬さ区分 200HV		
/ NV.	並丸鋼製座金「JIS B 1256 平座金」			
注入金物	鋼製	硬さ区分 200HV		
定着板	SS400「JIS G 3101 一般構造用圧延鋼材」	$\frac{235 \text{N/mm}^2}{215 \text{N/mm}^2}$	$t \leq 40 \text{mm}$ $t > 40 \text{mm}$	
アンカーフレーム	鋼製			
テンフ゜レート	鋼製			
捨てコンクリート	普通コンクリート	15N/mm ² 以上		

資4 グラウトモルタルの製品規格

4.1 ペース下グラウト (充填用) の製品規格

(1) 適用範囲

この規格は、NCベース工法(建築用鋼管柱露出型固定柱脚)のベースプレート下面と基礎コンクリート上面との間隙に施工される無収縮性グラウトモルタル材について適用する。

(2) 材料

グラウトの材料は、セメント系且つ非鉄金属系でプレミックス状態とし、下記の条件を備えている事。

1)施工性(流動性)

ベースプレートと基礎コンクリートの間隙 (50~55mm) を容易に充填でき、間隙内にあるアンカーボルト、ナット及びレベルモルタルのすみずみまで、ゆきわたる事。

2)無収縮性

所定のコンシステンシー (Jロート:5~11秒) の範囲内で練り混ぜたグラウトは、 材料分離 やブリージングがなく、安定した無収縮性を示す事。

3)強度特性

早強性 (材令 3 日) : 圧縮強度 25N/nm²以上 高強度性(材令 2 8 日) : 圧縮強度 45N/nm²以上

4)耐久性

乾湿の繰り返し、温度変化あるいは凍結融解等の環境条件に対して、長期間にわたって安定した耐久性を示す事。

4.2 シール材(アンカーボルト孔注入用)の製品規格

(1) 適用範囲

この規格は、NCベース工法(建築用鋼管柱露出型固定柱脚)のアンカーボルト孔 とアンカーボルトとの空隙に注入する無収縮性グラウトモルタル材について適用する。

(2) 材料

グラウトの材料は、セメント系且つ非鉄金属系でプレミックス状態とし、下記の条件を備えている事。

1)施工性(流動性)

アンカーボルト孔とアンカーボルトとの空隙に容易に注入でき、空隙内にあるアンカーボルトの谷部のすみずみまで、ゆきわたる事。

2)無収縮性

所定のコンシステンシー (J ロート: 3~6秒) の範囲内で練り混ぜたグラウトは、 材料分離 やブリージングがなく、安定した無収縮性を示す事。

3) 強度特件

早強性 (材令 3 日) : 圧縮強度 20N/mm²以上 高強度性 (材令 2 8 日) : 圧縮強度 45N/mm²以上

資5 RC基礎柱型の許容せん断力の設計式

5. 1 長期および短期の許容せん断力算定式

「鉄筋コンクリート構造計算基準・同解説 2010」(日本建築学会)による

柱

(1) 柱の長期許容せん断力Q_{AL}および 短期許容せん断力Q_{AS}(終局強度の検討を行わない場合)は、下記による

$$Q_{AL}$$
=bj α fs
 Q_{AS} =bj $\{$ fs+0.5wft (Pw - 0.002) $\}$

$$\alpha = \frac{4}{\frac{M}{M} + 1}$$
 かつ $1 \le \alpha \le 1.5$ (長期) 、 $1 \le \alpha \le 2$ (短期)

Pwの値が1.2%を超える場合は、1.2%として許容せん断力を計算する

記号

b:柱の幅

j:柱の応力中心距離で (7/8) dとすることができる

d: 柱の有効せい

Pw:帯筋比

 $Pw = \alpha w / bx$

αw: 1組の帯筋の断面積

x: 帯筋間隔

fs:コンクリートの許容せん断応力度

wft:帯筋のせん断補強用許容引張応力度

α:柱のせん断スパン比M/Qdによる割増し係数

M:設計する柱の最大曲げモーメント

Q:設計する柱の最大せん断力

(2) 終局強度の検討を行う場合の短期許容せん断力は、下記による

 $Q_{AS} = bj\{(2/3) \ \alpha fs + 0.5 wft \ (Pw - 0.002) \}$

$$\alpha = \frac{4}{\frac{M}{M} + 1}$$
 かつ $1 \le \alpha \le 1.5$ (短期)

(3) 柱の短期設計用せん断力 Q_0 は、その柱を含むラーメンの曲げ降伏荷重に対応する応力とする、 精算によらない場合は、(26) 式によることができる

ただし、7条1項により求められた水平荷重時せん断力を1.5倍以上に割増して使用する場合には、

(26) 式によらなくてよい

$$Q_D = \frac{\sum M_Y}{h'}$$

記号

ΣΜ_y: 柱頭・柱脚の降伏曲げモーメントの絶対値の和、この場合、柱頭の降伏曲げモーメントの絶対値 よりも、柱頭に連なる梁の降伏曲げモーメントの絶対値の和の 1/2 が小さい場合には、小さい ほうの値を柱頭の降伏曲げモーメントとしてよい。ただし、最上階の柱では 1/2 を省くものととする。

h': 柱の内法高さ

(4) 上記算定のほか、せん断補強筋は「鉄筋コンクリート構造計算基準・同解説」(日本建築学会 2010 年版) 15条2.(4)の各項による。

5.2 終局せん断耐力算定式

終局せん断耐力 (「告示 平19国交告第594号第4」による)

柱の終局せん断耐力の算定式は、国交省平成19年告示第594号第4により、下記による。

$$Q_c = Q_b + 0.1\sigma_0 \cdot b \cdot j$$
 (=1-1/2)

ここで

Q。: 当該柱を梁とみなして計算した場合における部材のせん断耐力(N)

 $\sigma_{\rm o}$: 平均軸応力度 ($F_{\rm e}$ に 0.4 を乗じた数値を超える場合は、 $F_{\rm e}$ に 0.4 を乗じた数値

とする。) (N/mm²)

b : 柱の幅 (mm)

j : 応力中心距離(柱の有効せいに 7/8 を乗じて計算した数値とする。)

(mm)

Q。 下式によって計算したはりのせん断耐力

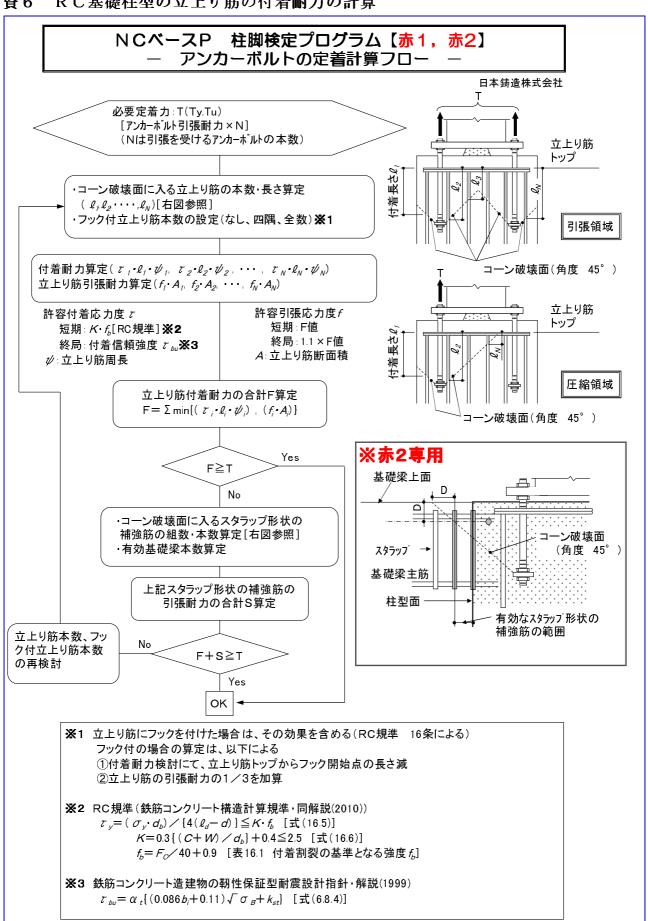
P.: 引張鉄筋比 (%)

Fc: コンクリートの圧縮に対する材料強度(N/mm²)

M/Q:強度算定断面におけるモーメントとMとせん断力Qの比

 $(t = t \leq L, 1 \leq M/(Q \cdot d) \leq 3)$ (mm)

d: はり有効せい (mm)


Pw:せん断補強筋比(少数とする。)

σwv: せん断補強筋の材料強度 (N/mm²)

b: はり幅 (mm)

j: 応力中心距離で $\frac{7}{8}$ d としてよい(mm)

RC基礎柱型の立上り筋の付着耐力の計算 資 6

お問い合わせ先

◆ 日本鋳造株式会社

建材部

〒210-9567 川崎市川崎区白石町2-1

TEL: 044 (322) 3765 (代表)

FAX: 044 (355) 8543

https://www.nipponchuzo.co.jp/nckp/